
MULTISENSOR SIGNAL PROCESSING:
THEORY AND ALGORITHMS FOR IMAGE-BASED RENDERING

AND MULTICHANNEL SAMPLING

BY

HA THAI NGUYEN

D.Ing., Ecole Polytehnique, 2001
D.Ing., Ecole Nationale Sup¶erieure des T¶el¶ecommunications, 2003

D.E.A., Universit¶e de Nice Sophia Antipolis, 2005

DISSERTATION

Submitted in partial ful¯llment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois



ABSTRACT

Multisensor applications have recently inspired important research projects to

utilize existing infrastructure and exploit spatiotemporal information. T his dis-

sertation focuses on two multisensor applications: image-based rendering and

multichannel sampling.

Although many image-based rendering(IBR) algorithms have been pro-

posed, few of them possess rigorous interpolation processes. We propose a

conceptual framework, called thePropagation Algorithm, that generalizes many

existing IBR algorithms, using calibrated or uncalibrated images, and focuses

on rigorous interpolation. We propose novel techniques to remove occlusions,

for both calibrated and uncalibrated cases, and to interpolate the virtual image

using both intensity and depth.

Besides algorithms, quantitative analysis is important to e®ectively control

the quality and cost of IBR systems. We analyze the rendering quality of IBR

algorithms using per-pixel depth. Working on the spatial domain, we consider

the IBR problem as a nonuniform interpolation problem of the virtual image or

the surface texture. The rendering errors can be quanti¯ed using the sample

errors and jitters. We approximate the actual samples, in the virtual image

plane or object surfaces, as a generalized Poisson process, and bound the jitters

caused by noisy depth estimates. We derive bounds for the mean absolute error

(MAE) for two classes of IBR algorithms: image-space interpolation and object-

space interpolation. The bounds highlight the e®ects of depth and intensity

estimate errors, the scene geometry and texture, the number of actual cameras,

their positions and resolution. We ¯nd that, in smooth regions, MAE decays as

O(¸ ¡ 2) for 2D scenes and asO(¸ ¡ 1) for 3D scenes, wherȩ is the local sample

density.

Finally, motivated by multichannel sampling applications, we consider hy-

brid ¯lter banks consisting of fractional delay operators, analog analysis ¯lters,

slow A/D converters, digital expanders, and digital synthesis ¯lters to approxi-

mate a fast A/D converter. The synthesis ¯lters are to be designed to minimize

the maximum gain of an induced error system. We show the equivalence of this

system to a digital system, used to design the synthesis ¯lters using control the-

ory tools, including model-matching and linear matrix inequality. The designed

system is robust against delay estimate errors.
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CHAPTER 1

INTRODUCTION

1.1 Motivations and Challenges

Hardware technologies have shown tremendous advancements in recent years.

These advancements signi¯cantly decrease the cost of measurement devices,

such as digital cameras, analog-to-digital converters, and sensors. As a result,

in many applications, one can use more and more devices in the measurement

process. Furthermore, pushing the limit of hardware technologies is often hard

and expensive for a given application. An alternative is to design algorithms and

systems, calledmultisensor systems, to fuse the data measured and processed

from many inexpensive devices.

Collecting data from di®erent measurement devices has additional rationales.

In many cases, systems built from few but very high performance devices can

be less robust than systems that use a large number of inexpensive devices and

appropriate algorithms. Moreover, in some applications, such as sensor net-

works [1, 2], image-based rendering [3, 4, 5], and sound-¯eld reconstruction [6],

using multiple sensors can also provide users with crucial spatiotemporal infor-

mation to exploit that one high performance measurement device alone cannot

produce.

In this context, multisensor algorithms and systems need to be developed

to e±ciently exploit a large amount of data collected using multiple sensors.

Moreover, faithful analysis of these multisensor algorithms and systems is also

necessary to control the quality and cost of multisensor systems.

In this thesis, we particularly focus our interest in two types of multisensor

systems: image-based rendering and multichannel sampling. In the following,

we present motivations and challenges for both types of applications.

1.1.1 Image-based rendering

The goal of photorealism is a Holy Grail for the ¯eld of computer graphics. For

many years, scientists have been endeavoring to produce high quality images

that are indistinguishable from images taken from natural scenes. To date, the

advancement is encouraging. Beautiful images of human beings, animals, man-

made objects, and landscape are successfully rendered. Commercial advertise-
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ments produced by computer graphics technologies are successfully introduced

to the demanding public. Interactive computer and video games attract the

attention of millions of players around the world. Computer-aid design (CAD)

applications facilitate the jobs of a wide range of professionals.

The state of the art of computer graphics has been pushed forward, very far

certainly, but not without a cost. In the search for photorealism, more and more

details are added to model the geometry of the scene, re°ectance properties of

the object surfaces, and lighting conditions [7]. The modeling process becomes a

very complex job, depending on the scene's complexity, and hence requires well-

trained experts. With so many parameters taken into account, the rendering

process becomes very time-consuming, sometimes taking hours or days to render

a single image. Although some dedicated hardware is designed to speed up the

rendering process, the high cost required certainly will inhibit the spread of

the applications to all their potential users. Despite these collective e®orts,

synthesis images are still di®erentiable from natural images.

While the scene geometry, its physical properties, and the lighting are hard

to model, a certain level of these properties can be learned from images. Char-

acteristics of the scene{such as the surface texture and lighting{although very

hard to model, can be easily \imitated" from real images. Moreover, the matu-

rity of computer vision algorithms [8, 9] in the mid-1990s allowed understanding

of the 3D scene geometry from multiple-view images.

In this context, image-based rendering(IBR) is developed as an alternative

to model-based rendering techniques of computer graphics. IBR applications

synthesize novel (or virtual) images, as taken by virtual cameras at arbitrary

viewpoints, using a set of acquired images. Potential applications of IBR include

virtual reality [10, 11], telepresence [12], augmented reality [13, 14], and 3D

television [15, 16].

Virtual reality applications use computers to simulate environments, in many

cases visual, that o®er participants some desired experiences. Telepresence ap-

plications, such as video conferencing, produce experiences in which people feel

present at some remote location di®erent from one's physical location. In aug-

mented reality, virtual objects are introduced into natural images of a realscene

in order to create some particular e®ects on visual perceptions. Finally, 3D tele-

vision applications create illusions that di®erent objects have di®erent depths.

The e®ects are enabled by the screen sending a customized image to di®erent

user viewpoints.

With IBR technologies promising many potential applications, IBR chal-

lenges attract the e®orts of many scientists from computer graphics, computer

vision, and signal processing. Main IBR challenges concern IBR representations

and algorithms, compression, and sampling.

A major challenge of the problem of IBR is to ¯nd representations and al-

gorithms to e®ectively exploit the hidden information of the scene from actual

images. If 3D models of the scene geometry, assumed in computer graphics
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methods as prior knowledge, are no longer appropriate, what form of geometri-

cal information is optimal for the rendering of the virtual images while keeping

the amount of IBR data and computation acceptable? Existing IBR algorithms

seem to choose the depth information, explicitly as depth maps or implicitly as

feature correspondences [3, 4]. Furthermore, as many IBR algorithms are ulti-

mately intended for real-time applications, it is important that IBR algo rithms

are fast and reliable.

Another importance of representations of IBR data is for compression. Ef-

fective data representations also enable compact compression, which is highly

necessary in IBR applications since the size of IBR data are typically very large

compared to images and videos. IBR compression techniques should possess

at least the basic requirements of video compression. However, IBR data are

expected to contain more redundancies, both in time and space. In some IBR

applications, we also desire the ability of random access down to the pixel level

to facilitate the rendering process of IBR algorithms.

Finally, the problem of IBR can be considered as an instance of the sampling

and reconstruction framework [17, 18, 19, 20, 21]. Hence, fundamental questions

of the classical sampling and reconstruction framework need to be addressed.

These questions include how many samples (in this case the number of cameras

and/or resolution) and the optimal sample locations (i.e., camera locations)to

ensure the rendering quality of IBR systems. Also, what level of the scene's

characteristics, such as the scene geometry and texture, is necessary to ensure

a prede¯ned rendering quality? Work toward answering these questions is very

important; we cannot control the quality and cost of IBR systems without

faithful analysis of these fundamental questions. In fact, many existing IBR

algorithms have to rely on oversampling to limit the e®ects of aliasing on the

rendered images [22, 23].

These IBR challenges pose various di±culties. IBR data are non-uniform,

even if the cameras are uniformly placed in the scene, due to projective mapping

from the scene surfaces to the camera image planes. Moreover, IBR data belong

to vector spaces of high dimensions; in particular, the plenoptic function [24]

is a function of seven variables. Finally, IBR algorithms are highly nonlinear,

in particular because of the occlusions of surface points and because the scene

surfaces exhibit non-Lambertian properties.

1.1.2 Multichannel sampling

With the explosion of the digital era, many analog data such as image, audio,

speech, and text become available in digital formats. Key technical issues arising

from this context include data conversion from continuous-domain to discrete-

domain, called the sampling process, and from discrete-domain to continuous-

domain, called the reconstruction process. As a result, the problem of sampling

and reconstruction recently has become a very active research area [25].
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A classic result on sampling and reconstruction dates back to the Shannon

reconstruction formula [26, 27]

f (t) =
1X

n = ¡1

f (nT ) ¢sinc(t=T ¡ n); (1.1)

where f (nT ) are equidistant samples of a function f (t) whose bandwidth is

bounded by the Nyquist frequencyf N = 1=(2T). Equation (1.1) is fundamen-

tal in the design of analog-to-digital (A/D) converters. If the bandwidth lim it

condition of f (t) is satis¯ed, we can samplef (t) for losslessstorage and trans-

mission using digital communications channels and devices.

Equation (1.1) can be considered in another way. Given an analog function

f (t), a faithful sampling of function f (t) requires the use of A/D converters with

sample interval T < 1=(2f max ). Hence, if function f (t) has energies at high fre-

quencies, the sample intervalT needs to be small enough to capture these high

frequency energies off (t), hence avoiding aliasing. However, in some appli-

cations, decreasing the sample intervalT is not preferable, if not impossible,

because of limits of hardware technologies. A novel sampling framework using

multiple sensors, or multichannel sampling, arises from this context as a ne-

cessity. Potential applications of multichannel sampling include superresolution

and data fusion.

Superresolution applications [28, 29, 30] enhance the resolution of imaging

systems using signal processing techniques. In these applications, the sample

interval T in (1.1) can be understood as the size of pixels on the chip. Decreasing

T will cause unexpected levels of noise, especially shot noise, in the acquired

images [28]. Hardware technologies to reduce the pixel size are replaced by

signal processing alternatives to reduce system cost and to utilize existing low-

resolution imaging systems.

Another application of multichannel sampling is to fuse low resolution sam-

ples of analog signals, such as speech or audio signals, to obtain high resolution

samples [31, 32]. Multipleslow A/D converters, with large sample interval T

(measured in time or space), are used to sample analog signals. These samples

can be fused to synthesize high resolution signals, as if it is sampled using afast

A/D converter. Because of its low cost, this approach is preferred to using fast

A/D converters directly.

In order to build multichannel sampling systems, several problems need to

be addressed. First, we need to align low-resolution digital signals with the

precision of a fraction of the sample interval. This problem is very challenging

because we only know the signal's value at discrete positions; the intersample

behaviors are not apparent. Moreover, we need to design e±cient algorithms

and analyze their performances faithfully. These problems are di±cult because

the system is inherently hybrid and a lot of information of the signal is lost in

the sampling process.
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1.2 Related Work

We discuss related work for image-based rendering applications in Section 1.2.1

and for multichannel sampling applications in Section 1.2.2.

1.2.1 Image-based rendering

Adelson and Bergen, although not being aware of image-based rendering (IBR)

applications, introduced in 1991 theplenoptic function [24] that afterward helped

to de¯ne mathematically the problem of image-based rendering as a reconstruc-

tion problem. The appearance of the scene is considered as the dense array of

light rays. For each pinhole camera, the light rays passing the camera center de-

termine the image. The plenoptic function is a 7D variable function of the form

P = P(µ; Á; ¸; t; Vx ; Vy ; Vz ) characterizing the intensity of the light ray passing

through location (Vx ; Vy ; Vz ) with direction ( µ; Á), for every wavelength ¸ , and

at every time t.

Another step toward the emergence of image-based rendering was the ma-

turity of computer vision algorithms. The Eight Point algorithm [33, 34] was

proposed in 1987 to reconstruct the scene's 3D structure (the essential matrix)

using as few as eight nondegenerate correspondences at calibrated actual im-

ages. (In fact, the 3D structure of the scene can be determined using as few

as ¯ve correspondences using the nonlinear Kruppa equation [9].) In the case

where only uncalibrated images are available, we can reconstruct the scene's 3D

structure in the form of the fundamental matrix [35]. The fundamental matrix

helps to recover the scene geometry up to an unknown projective transforma-

tion [8, 9, 36]. In summary, information of the scene's 3D structure can be

exploited from actual images of the scene.

Among IBR pioneers, Chen and Williams introduced view interpolation [37,

38] that rendered in-between images by interpolating the image °ows. Laveau

and Faugeras [39] took correspondences to predict virtual images using some

projective basis. Their method also allowed one to resolve occlusions using

the knowledge of vanishing points without the reconstruction of the 3D scene

geometry.

The problem of IBR was not well-de¯ned mathematically until 1995, when

McMillan and Bishop introduced [40] the term \image-based rendering" and

recognized the connection of the IBR problem with the reconstruction of the

plenoptic function. They proposed that the IBR problem is nothing but to re-

construct the plenoptic function (virtual images) using a set of discrete samples

(that is actual images). McMillan also proposed [41] the warping equationto

transfer actual pixels to the virtual image plane, and a technique to compute

the visibility of samples at the virtual camera, using a painterlike algorithm.

Without any knowledge of the scene geometry, how much can a purely image-

based rendering system o®er in terms of the rendering quality? In 1996, Gortler
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et al. [22] introduced Lumigraph while Levoy and Hanrahan [23] described light

¯eld rendering. Both systems interpolated the virtual images in the ray-domain.

However, they relied on a large number of images to compensate for the lack of

geometry.

Debevec et al. [42, 43] proposed a mixture between the model-based ap-

proach of computer graphics [7] and the image-based approach. Their system

starts with simple modeling primitives of the scene and uses images to tune the

model to be more faithful to the 3D scene geometry. The virtual images are

rendered using 3D warping technique [41] and view-dependent texture mapping,

a technique that conceptually interpolates samples in the 3D space, having fast

image-space implementations using perspective correction [44].

Many IBR algorithms have been proposed to date. A prominent classi¯ca-

tion of IBR algorithms, proposed by Shum et al. [3, 4], is based on the level

of geometrical information used as a priori knowledge. In this continuum, IBR

algorithms using explicit depth maps include Unstructured Lumigraph Render-

ing [45], and Layered Depth Images [46], while IBR algorithms using featurecor-

respondences as implicit geometrical information include View Morphing [47],

and Joint View Triangulation [48].

While many IBR methods have been proposed, little research has addressed

the fundamental question of the sampling and reconstruction of the plenoptic

function and/or the rendering quality of IBR algorithms. In [49], Chai et al. a n-

alyzed the minimum number of images necessary to reconstruct the light ¯eld (a

special case of the plenoptic function). They also provided a minimum sampling

curve that determines the tradeo® between the number of images and the scene

geometry. In [50], Zhang and Chen proposed a surface plenoptic function to an-

alyze non-Lambertian and occluded scenes. In [51], Chan and Shum considered

the problem of plenoptic sampling as a multidimensional sampling problem to

estimate the spectral support of the light ¯eld given an approximation of the

depth function.

In the analysis of IBR data, most existing literature addresses the Fourier do-

main because the IBR data exhibit fan-type structure in the frequency domain.

However, Do et al. [52] showed that in general the plenoptic is not bandlimited

unless the surface of the scene is °at. A similar conclusion was also reached by

Zhang and Chen [50].

The problem of IBR data compression is still understudied. In [53, 54], the

depth maps are compressed using the JPEG2000 encoder [55]. In [56], Taubin

discussed the problem of geometry compression. Light ¯elds [23] and Lumi-

graph [22] proposed their own compression techniques. In [57], Duan and Li

addressed the problem of compression layered depth images. In [58], Fehn pre-

sented a compression and transmission technique for 3D television applications.

Many of the current techniques are adapted from image and video compression

techniques; the redundancies typical of IBR data are not fully exploited. Hence,

there is certainly room for improvements in IBR data compression.

6



1.2.2 Multichannel sampling

The problem of sampling and reconstruction was formulated almost 60 years

ago in a seminal paper of Shannon [26, 27] by means of the reconstruction

formula (1.1). In the mathematical literature, the result is known [25] as the

cardinal series expansion that can be traced further back to Whittaker [59].

The modern approach formulates the Shannon reconstruction formula (1.1)

as an orthogonal projection of analog signals to a Hilbert space formed bya

kernel function, such as the sinc function or B-splines, and its shifted and scaled

versions [17, 25].

The ¯rst attempt to generalize the sampling and reconstruction problem

to multichannel sampling was proposed by Papoulis in 1977 [32]. Papoulis

showed that a band-limited signal f (t) could be perfectly reconstructed from

the equidistant samples of the responses ofm linear shift-invariant systems with

input f (t), sampled at 1=m the Nyquist rate.

From a more general viewpoint, the sampling operator is usually part of sys-

tems with digital implementations (hybrid systems). In this situation, sampled-

data control techniques [60] can be used to take into account intersample be-

haviors of the signals. Moreover, systems with multichannel sampling as a

component are inherently multirate [31]. Literature on multirate systems can

be found in an excellent book of Vaidyanathan [61].

1.3 Problem Statement

This thesis is concerned with two di®erent multisensor applications, namely,

image-based rendering (in Chapter 2, 3, and 4) and multichannel sampling (in

Chapter 5).

For the problem of image-based rendering (IBR), our goal is to bring rig-

orous ampling and reconstruction techniques to IBR algorithms and analysis.

Speci¯cally, we would like to:

IBR algorithm. Develop IBR algorithms to generate valid views of 3D scenes

using acquired calibrated or uncalibrated images and full or partial depth

maps. We focus on the interpolation process using rigorous sampling and

reconstruction frameworks.

IBR analysis. Analyze the performance of IBR algorithms based on the char-

acteristics of the scenes, such as the scene geometry and texture, and of

the camera con¯guration, such as the number of actual cameras and their

positions and resolutions.

For the multichannel sampling problem, our objective is to exploit the in-

tersample behaviors of the signals to improve the performance over existing

techniques. Speci¯cally, we would like to:
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Filter design. Design IIR and FIR ¯lters to complete a hybrid system that

approximates the output of a fast A/D converter using outputs of multiple

slow A/D converters. The goal is to optimize the gain of an induced error

system.

1.4 Thesis Outline

We dedicate the next three chapters (Chapters 2, 3, and 4) to the problem of

image-based rendering (IBR). The subsequent chapter (Chapter 5) is concerned

with the multichannel sampling problem. The speci¯c outlines of the chapters

are given in the following.

In Chapter 2, we propose a conceptual framework, called thePropagation

Algorithm, that generalizes many existing IBR algorithms, using calibrated or

uncalibrated images, and focuses on rigorous interpolation techniques. The

framework consists of three steps: information collection to the virtual image

plane, occlusion removal, and interpolation of the virtual image. We apply the

framework to three di®erent IBR scenarios{namely, calibrated IBR with full or

partial depth, and uncalibrated IBR using sparse correspondences{by proposing

innovative techniques. These techniques include occlusion removal for both

calibrated and uncalibrated cases, interpolation using depth and intensity, and

segmentwise and image-consistent depth interpolation. Experiments show that

the proposed Propagation Algorithm obtains excellent rendering quality.

Next, we provide a quantitative analysis of the rendering quality of image-

based rendering (IBR) algorithms per-pixel depth in Chapter 3. Assuming the

ideal pinhole camera model and 2D unoccluded scene, we show that IBR errors

can be quanti¯ed using sample intervals, sample errors, and jitters. We derive

bounds for the mean absolute error (MAE) of two classes of IBR algorithms:

image-space interpolation and object-space interpolation. The proposed error

bounds highlight the e®ects of various factors including depth and intensity

estimate errors, the scene geometry and texture, the number of actual cameras,

their positions and resolution. Experiments with synthetic and actual scenes

show that the theoretical bounds accurately characterize the rendering errors.

We discuss implications of the proposed analysis on camera placement, budget

allocation, and bit allocation.

In Chapter 4, we extend the analysis of IBR algorithms to 2D occluded

scenes and 3D unoccluded scenes. For 2D occluded scenes, we measure the

e®ects of jumps in sample intervals around the discontinuities of the virtual

image, resulting in additional terms. For 3D scenes, we derive an error bound

for triangulation-based linear interpolation and exploit properties of Poisson

Delaunay triangles. We show that the mean absolute errors (MAE) of the

virtual images can be bounded based on the characteristics of the scene and the

camera con¯guration. An intriguing ¯nding is that triangulation-based linear
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interpolation for 3D scenes results in a decay orderO(¸ ¡ 1) of the MAE in

smooth regions, where¸ is the local density of actual samples, compared to

O(¸ ¡ 2) for 2D scenes.

Motivated by multichannel sampling applications, we consider in Chapter 5

hybrid multirate ¯lter banks consisting of a set of fractional delay operator s,

analog analysis ¯lters, slow A/D converters, digital expanders, and digital syn-

thesis ¯lters (to be designed). The synthesis ¯lters are designed to minimize

the maximum gain of a hybrid induced error system. We show that the induced

error system is equivalent to a digital system. This digital system enables the

design of stable synthesis ¯lters using existing control theory tools such asmodel-

matching and linear matrix inequalities (LMI). Moreover, the induced error is

robust against delay estimate errors. Numerical experiments show the proposed

approach yields better performance than existing techniques.

Finally, in Chapter 6, we present the conclusions and future work.

Each chapter is self-contained so that readers can start directly in the chapter

of interest.
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CHAPTER 2

UNIFIED FRAMEWORK FOR
CALIBRATED AND
UNCALIBRATED
IMAGE-BASED RENDERING

2.1 Introduction

Image-based rendering(IBR) applications synthesize novel (or virtual) images,

as taken by virtual cameras at arbitrary viewpoints, using a set of acquired

images. With advantages of photorealism and low complexity over traditional

model-based techniques, IBR has many potential applications, hence attracting

many researchers in the ¯eld [3, 5].

Most IBR algorithms replace the scene's physical models with geometrical

information such as explicit depth maps for calibrated images [41, 46, 64] and

feature correspondences for uncalibrated images [38, 39, 47, 48]. In this con-

text, we believe that the depth information o®ers a good tradeo® between the

approaches of purely-images-alone [23] and model-based techniques [7]. More-

over, while many IBR techniques have been proposed by computer graphics and

computer vision researchers, little work has concentrated on interpolationusing

rigorous signal processing frameworks.

In this chapter, we suggest that many IBR algorithms, using depth maps for

calibrated images or correspondences for uncalibrated images, can be analyzed

using a uni¯ed framework, called the Propagation Algorithm. The Propagation

Algorithm possesses well-separated steps of information collection, occlusion

removal, and intensity interpolation, hence opening areas for improvement in

the interpolation process. Moreover, the Propagation Algorithm also facilitates

quantitative analysis, as shown in Chapters 3 and 4.

The main contributions of this chapter include techniques proposed for the

Propagation Algorithm framework. While the Propagation Algorithm is simple,

it serves as a conceptual framework for di®erent IBR con¯gurations: calibrated

images with full or partial depth information and uncalibrated images with f ea-

ture correspondences. For calibrated images with full depth information, we

0This chapter includes research conducted jointly with Prof . Minh Do [62, 63].
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propose a simple and adaptive technique to remove occlusions, and interpo-

late the virtual image using both the intensity and depth of visible samples,

following the linear inverse framework. In the case of calibrated IBR with par-

tial depth information, we propose to segmentwise interpolate the depth for

all pixels before applying the Propagation Algorithm framework. Finall y, for

uncalibrated IBR, we propose to weakly calibrate the corresponding features

and interpolate the projective depth using the Delaunay triangulation [65]. We

also propose to resolve occlusions directly in the projective domain, using the

chirality parameter [66].

The remainder of the chapter is organized as follows. In Section 2.2, we

present the problem de¯nition, the Propagation Algorithm framework, and lit-

erature review. In Section 2.3, we propose an algorithm for the case of calibrated

IBR with full depth information. We consider calibrated IBR with partial depth

information in Section 2.4. Uncalibrated IBR is treated in Section 2.5. Finally,

we give concluding remarks in Section 2.6.

2.2 Background

We ¯rst present the problem de¯nition in Section 2.2.1. Next, in Section 2.2.2,

we describe the Propagation Algorithm framework. We discuss existing IBRtex-

ture mapping algorithms in light of the Propagation Algorithm in Section 2.2.3.

2.2.1 Problem setup

We assume that the scene surfaces are Lambertian [67], that is, images of a

surface point at di®erent cameras have the same intensity. In addition, the

pixel intensity is assumed to be scalar valued. In the case where pixel intensity is

vector valued, for example RGB, the algorithm simply performs each coordinate

independently.

A 3D pinhole camera is characterized by a matrix ¦ 2 R3£ 4. We denote

ex = [ x; y; 1]T and eP = [ X; Y; Z; 1]T the homogeneous coordinateof x = [ x; y]T

and P = [ X; Y; Z ]T , respectively. For a 3D surface pointP , its image position

is determined by the projection equation

d ¢[x; y; 1]T = ¦ ¢[X; Y; Z; 1]T : (2.1)

Problem de¯nition. The inputs of our algorithm are the actual cameras'

projection matrices f ¦ i gN
i =1 , the intensity images f I i (x )gN

i =1 , the depth maps

f di (x )gN
i =1 , and the virtual projection matrix ¦ v . The output is the virtual

image I v (x ).
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2.2.2 The Propagation Algorithm

The key idea of the Propagation Algorithm [62] is to focus on signal processing

techniques of IBR algorithms. At the virtual camera, we collect all available

information provided by actual cameras and resolve occlusions to turn the IBR

problem into a traditional nonuniform 2D interpolation problem. The Propa-

gation Algorithm has the three following steps:

² Information Propagation. Using depth, surface points, whose images

are actual pixels, are reconstructed and reprojected onto the virtual cam-

era. The actual pixels are said to bepropagated to the virtual image

plane.

² Occlusion Removal. Remove all the points that are occluded at the

virtual camera.

² Intensity Interpolation. Interpolate the virtual image using the depth

and intensity of the visible points.

The approach of the Propagation Algorithm enables systematic investigation

of the interpolation process using traditional signal processing techniques [21,

25, 68]. The framework also allows quantitative analysis of the rendering quality,

as demonstrated in the next Chapters 3 and 4.

2.2.3 Existing IBR algorithms

In this section, we suggest that the interpolation process of many existing IBR

algorithms can be analyzed using the Propagation Algorithm framework.

View-dependent texture mapping [43, 45].In these IBR algorithms, actual

pixels are propagated to the virtual image plane (projective mapping). The

virtual image is interpolated as the weighted average of nearby samples.This

interpolation scheme can be considered as being derived from some kernel func-

tion on the virtual image plane.

3D warping [41, 46, 64]. These IBR algorithms propagate patches, such as

an elliptical weighted average ¯lter [44], around actual pixels, instead of pixels

themselves, to the virtual image plane. This process is equivalent to interpolate

the virtual image from propagated samples (not patches) using warped versions

of the kernel functions. The interpolation process hence can be analyzed using

signal processing frameworks [21, 68, 69].

IBR using correspondences [37, 39, 47, 48].These techniques usually trans-

fer corresponding features to the virtual image plane using projective basis or

epipolar constraints. We note a classical result [8, 36] in computer visionthat 3D

scene reconstruction can be reconstructed up to an unknown projective trans-

formation (weak calibration) without a®ecting image-space constraints. Hence,
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these IBR techniques can be conceptually thought of as texture mapping algo-

rithms using projective depths.

In summary, the interpolation process of many existing IBR algorithms can

be analyzed using the Propagation Algorithm framework. In the next three sec-

tions, applying the Propagation Algorithm framework, we propose an algorithm

for three progressive challenging situations that have practical signi¯cance.

2.3 Calibrated IBR with Full Depth
Information

In Sections 2.3.1{2.3.3, we present three steps of the Propagation Algorithm

for IBR with calibrated images where the depth information is available at all

actual pixels. Finally, experiments are given in Section 2.3.4.

2.3.1 Information propagation

The main idea of this step is to collect all the available information to the

virtual camera before doing any further processing. At actual pixels, the depth

information allows us to reconstruct the 3D surface points before reprojecting

them to the virtual image plane. (Since we work on the continuous domain,

the reprojection may not be at pixel positions.) We say that the intensity and

depth information are propagatedfrom actual pixels to the virtual image plane.

Let e4 = [0 ; 0; 0; 1]T . Using the projection equation, a 3D point X can be

recovered from its imagex at a camera¦ using the depth as follows:

fX =

"
¦

eT
4

#¡ 1

¢

"
d¦ ex

1

#

: (2.2)

Inversely, the depth of a 3D point X relative to camera ¦ = [ ¼1; ¼2; ¼3]T

can be computed as the last coordinate of¦ fX , i.e.,

d¦ (x ) = ¼3
fX : (2.3)

2.3.2 Occlusion removal

In the Information Propagation step, actual pixels are propagated to the virtual

camera ¦ v without considering their visibility at ¦ v . We present a technique

to remove occlusions that is adaptive and simple to implement.

The Occlusion Removal step removes all points in whose neighborhood (pa-

rameterized by " 2 R) there exist other points with su±ciently smaller depth

(parameterized by ¾ 2 R). As illustrated in Fig. 2.1, in considering point A ,

we create a removal zone (the shaded zone) for which all other points falling in
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depth

AB

C

"

¾

removal zone
for point A

virtual image plane

Figure 2.1: Illustration of the Occlusion Removal step. Point C is considered
occluded by point A and therefore is removed. Point B is not removed by
looking at point A alone.

% Remove occluded points fromP to get Q
Q = P;
For each point x 2 P

If 9 y 2 P such that kx ¡ yk2 · "
and dv (x ) ¡ dv (y ) ¸ ¾

Q = Q ¡ f x g;
Endif

Endfor

Figure 2.2: Pseudocode of the Occlusion Removal step. All points in whose
neighborhood there exist other points with su±ciently smaller depth are re-
moved. Parameters" and ¾are used to determine neighborhood and to di®er-
entiate surfaces.

this zone will be removed. Hence, pointC is considered occluded by pointA

and therefore is removed. PointB is not removed by looking at point A alone;

it may be visible or occluded by another point. The pseudocode of this step is

shown in Fig. 2.2.

Determining ¾ and " . The parameters ¾ and " can be tuned according

to the characteristics of the scene and/or applications. If a large¾ is cho-

sen, we risk keeping background points, whereas if¾ is small we may remove

foreground points of inclining surfaces. As for" , a large value of " removes

more points, keeping only visible points with high con¯dence. However, it also

removes background points around the boundaries, hence reducing the image

quality. For small value of " , again we risk keeping background points because

no foreground point may fall in the neighborhood.
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2.3.3 Intensity interpolation

Finally, when all relevant information is at our disposal, we interpolate the

virtual image using the intensity information of remaining points Q. The virtual

image is then simply the value of this function at the pixel positions.

A major challenge at this step is to avoid interpolating samples of di®er-

ent surfaces around the edges. We propose to follow the linear inverse frame-

work [70] with a regularization using the depth to allow fast transitions around

edges. In the following, we limit ourselves to the 1D interpolation case. The

case arises in con¯gurations where all cameras are located in the same plane, or

if we rectify actual images before the rendering process. The 2D case is left for

future research.

Let I v (x) and dv (x) be the intensity and the depth at remaining samples

x 2 Q ½ R. We assume that the virtual image I v (x) belongs to a shift-invariant

space formed by some kernel function' (x ¡ m¢) [17], such as B-splines [21] or

sinc(x). In other words, we solve forI v (x) of the form

J (x) =
MX

m =1

cm ' (x ¡ m¢ x ); (2.4)

whereM is number of virtual pixels. Our goal is to ¯nd coe±cients c = f cm gM
m =1

to minimize the following cost function

f (c) =
X

x 2Q

(I v (x) ¡ J (x))2 + ¸V x (J 0(x))2; (2.5)

where Vx denotes the inverse of the local depth variation around pointx 2 Q .

Again, similar to Section 2.3.2, two samples are local if their distance issmaller

than a parameter " .

The ¯rst term of f (c) is to obtain a faithful approximation at sample points

Q. The idea of the second term (the regularization term) allows large derivative,

hence sharp increase or decrease, around edges. The solution for the above min-

imization is standard [70] and can be solved using matrix inversions or gradient

descent techniques.

2.3.4 Experimental results

Stereo data of a translational con¯guration, provided by Scharstein et al. [71],1

are used in our numerical experiments. All the cameras placed in the liney = 0

and focused to the same direction of they-axis. Two actual cameras, atu0 = 2

and u1 = 6, are used to render the virtual image at uv = 4. Because the images

are color, we render the virtual image for each color channel (RGB) separately.

Using the Teddy images as inputs (Fig. 2.3), we plot the rendered image in

1The data is available at http://cat.middlebury.edu/stereo/newdata.html .
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(a) Image at u0 = 2. (b) Image at u1 = 6.

(c) Depth at u0 = 2. (d) Depth at u1 = 6.

Figure 2.3: Inputs of the Propagation Algorithm using full depth. (a) Image at
u0 = 2, (b) image at u1 = 6, (c) depth at u0 = 2, (d) image at u1 = 6.

Fig. 2.4. Parameters " = 0 :6 and ¾ = 0 :05dv (y ) are used in the Occlusion

Removal step.

2.4 Calibrated IBR with Partial Depth

We start with the motivations and approach in Section 2.4.1. In Section 2.4.2,

we present the depth interpolation technique. Finally, we show numerical ex-

periments in Section 2.4.3.

2.4.1 Motivations and approach

The algorithm proposed in Section 2.3 relies on the availability of depth at all

actual pixels. This section is inspired by the assumption that the depth provided

by range ¯nders [72, 71] is of lower resolution than that of intensity images. In

this section, we consider that the depth maps are available at a downsampled

version of the full depth maps used in Section 2.3. In Fig. 2.5, we highlight the

depth-available pixels (one depth every 6£ 6, or about 3%, of intensity pixels).

There are two approaches to utilize the Propagation Algorithm framework:

preprocessing (interpolate the depth for other actual pixels ¯rst) and postpro-
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(a) Ground truth image at u = 4. (b) Rendered image at u = 4.

Figure 2.4: Rendered image of the Full Depth Propagation Algorithm. (a) The
ground truth image taken at uv = 4, and (b) the rendered image at uv = 4.

Figure 2.5: The scene atu0 = 2 and depth-available pixels on a regular grid of
dimension 6£ 6 (highlighted dots).
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Only intensity available Depth is also available

Segmentation boundaries

Unit square S

Pixel x to 
interpolate
the depth

Figure 2.6: Segmentwise interpolation of depth. Dots are intensity pixels, and
circles are depth-available pixels. We interpolate the depth for each unit square
of depth-available pixels. Bilinear interpolation is used for square falling inside
the same depth segment. Nearest neighbor interpolation is used for segment-
crossing unit squares.

cessing (propagate depth-available pixels ¯rst). We adopt the preprocessing

approach for two reasons. First, by doing this we do not discard any available

information in our processing. Second, the depth is smoother and has fewer

discontinuities to process than the intensity.

2.4.2 Segmentwise depth interpolation

A simple technique is to bilinearly interpolate [62] the depth maps to obtain

depth for all actual pixels. Bilinear interpolation leads to blurred object bound-

aries. We propose a new technique, calledsegmentwise depth interpolation, to

incorporate both intensity and depth information to interpolate the depth.

We start with a segmentation of the intensity images and of the low-resolution

depth maps. We interpolate the depth for each unit square of depth-available

pixels as illustrated in Fig. 2.6. For a unit square S, if all four vertices of S

belong to the same depth segment, bilinear interpolation is used to interpolate

the depth at pixels inside S. Otherwise, S lies on boundaries of di®erent depth

segments, and the depth of a pixelx is assigned by the depth of the closest

vertex of S among those that share the same intensity segment withx .

In practice, small intensity segments, usually in texture regions, may not

contain any depth-available pixel. The pixels in these segments are marked and

later ¯lled using the depth of neighboring pixels, using morphological techniques

such as dilation and erosion [73].
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Figure 2.7: The reconstructed depth at actual camerau1 = 6 using segmentwise
depth interpolation technique. The depth at u0 = 2 is obtained similarly.

Figure 2.8: Virtual image at uv = 4 rendered using depth at about 3% of pixels.
To be compared with the case of full depth in Fig. 2.4.

2.4.3 Experimental results

We use the same translational con¯guration as in Section 2.3.4, and the depth

images are downsampled versions of the intensity images with ratek = 6 for

both horizontal and vertical directions, as in Fig. 2.5. Moreover, the MeanShift

algorithm, proposed by Comeniciu et al. [74],2 is used to segment images.

In Fig. 2.7, we show the depth at actual camerau1 = 6 reconstructed us-

ing the proposed technique. The depth at actual camerau0 = 2 is obtained

similarly. These depth images are used as inputs of the Propagation Algorithm

proposed in Section 2.3 to render the virtual image. The virtual image atuv = 4

is rendered using the proposed technique in this section as shown in Fig. 2.8.

2.5 Uncalibrated IBR Using Projective Depth

We present in this section an algorithm to render the virtual image using fea-

ture correspondences of uncalibrated images. We present the motivations and

approach in Section 2.5.1. In Section 2.5.2, we resolve occlusions directly in

2The software is available at http://www.caip.rutgers.edu /riul/research/code/EDISON/.
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projective reconstructions. In Section 2.5.3, we approximate projective depths

using a triangulation of feature points. We present numerical experiments in

Section 2.5.4.

2.5.1 Motivations and approach

Motivated by the fact that for uncalibrated images, correspondences are usually

detected at \good features" such as image corners [75], we consider to render

virtual images using correspondences of uncalibrated images. We show that the

same Propagation Algorithm framework is applicable for IBR using uncalibrated

images.

In our algorithm, feature correspondences are used to reconstruct a projec-

tive reconstruction. The projective depth is interpolated at remaining actual

pixels using an image-consistent triangulation [76]. The Propagation Algorithm

framework can be used at this point, using the chirality parameter, to resolve

the visibility directly in projective reconstructions.

2.5.2 Occlusion removal in projective reconstructions

It is a classical result [8, 36] in computer vision that from correspondences

of uncalibrated images, we can reconstruct the 3D points up to a projective

transformation, characterized by an unknown 4 £ 4 matrix H. Under the trans-

formation H, a 3D point fX and the projection matrix ¦ becomes

fX p = H fX ; ¦ p = ¦ H ¡ 1: (2.6)

Interestingly, in this projective reconstruction, the image x p of point fX p on

camera¦ p coincides with x :

ex p = ¦ p
fX p = ¦ H ¡ 1HX = ¦ X = ex : (2.7)

However, the projective depth dp of fX p with respect to the camera ¦ p is dif-

ferent from d. In fact

dp = d=tp; (2.8)

where tp is the last coordinate of fX p = HX .

In Fig. 2.9(b), we illustrate how a projective transformation can deform

the scene compared to the original scene in Fig. 2.9(a), causing di±culties in

resolving occlusions. In Fig. 2.9(c), we show that a projective reconstruction

still has the essential structure of the scene if we view it in the chirality domain.

The chirality parameter Â is de¯ned as the negative inverse of the projective

depth:

Â = ¡
1
dp

: (2.9)
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Figure 2.9: Chirality parameter Â preserves the scene structure better than
depth under projective transformations. All x-axis is image plane. (a) Surface
points seen from a camera;y-axis is depth. (b) The scene after being applied a
projective transformation; y-axis is projective depth. (c) The projective scene
with y-axis is the chirality parameter Â = ¡ 1=d.
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It is known [66] that Â can be used to resolve occlusions.

The use of the chirality parameter o®ers an intuitive way to resolve occlu-

sions directly in projective reconstructions, compared to other existing occlusion

removal techniques [39, 41].

2.5.3 Triangulation-based depth approximation

Having shown that occlusions can be resolved directly in projective reconstruc-

tions, in this section we interpolate the projective depth for other actual pixels

before applying the Propagation Algorithm framework. To this end, we linearly

interpolate the depth using some triangulation of image features. Existing tri-

angulations, such as the Delaunay triangulation [65] and theimage-consistent

triangulation [76], can be used. In this section, the Delaunay triangulation is

used for its simplicity and available implementations.

2.5.4 Experimental results

We use the multiple-view data setModel House.3 Images at the actual cameras

¦ 2 and ¦ 4 are used to render the image at the virtual camera¦ 3. In Fig. 2.10,

we show the inputs of our algorithm: two actual images at¦ 2; ¦ 4 and the feature

correspondences (circle). We also plot the Delaunay triangulation of the feature

points. The projective depth of other actual pixels will be interpolated in each

triangle of the triangulation.

In Fig. 2.11(b), we show the rendered image at the virtual camera¦ 3 com-

pared to the ground truth (Fig. 2.11(a)). The virtual image is observed to have

good rendering quality.

2.6 Conclusion and Discussion

We suggested that many existing IBR algorithms, using calibrated or uncali-

brated images, can be analyzed using a uni¯ed framework, called the Propaga-

tion Algorithm. The framework is useful for improvements in the interpol ation

process using rigorous signal processing techniques. We applied the Propagation

Algorithm to three IBR scenarios. For calibrated IBR with depth maps, we pro-

posed an adaptive occlusion removal and interpolation of the virtual image using

the intensity and depth information, following the linear inverse framework. In

the case of calibrated IBR with partial depth, we segmentwise interpolated the

depth for all actual pixels. For uncalibrated IBR using feature correspondences,

we weakly calibrated the scene, interpolated projective depths using the Delau-

nay triangulation, and removed occlusions directly in projective reconstructions

using the chirality parameter.

3The data set is available at http://www.robots.ox.ac.uk/~ vgg/data1.html.
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(a) Inputs at actual camera ¦ 2 .

(b) Inputs at actual camera ¦ 4 .

Figure 2.10: Inputs at actual camera ¦ 2; ¦ 4. For each camera we have as
inputs the intensity image and the set of feature points (circles). The Delaunay
triangulation of feature points is also plotted. We will interpolate the depth in
each of these triangles.
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(a) The ground truth image at camera ¦ 3 .

(b) The rendered image at camera ¦ 3 .

Figure 2.11: The renderedModel House image at ¦ 3. (a) The ground truth
image at ¦ 3. (b) The rendered image at ¦ 3.
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The approach proposed in this chapter also allows rigorous analysis of IBR

algorithms using depth maps, as shown in our companion papers [77, 78]. As

future work, we would like to address the implementation issues of the Propa-

gation Algorithm.
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CHAPTER 3

QUANTITATIVE ANALYSIS
FOR IMAGE-BASED
RENDERING: 2D
UNOCCLUDED SCENES

3.1 Introduction

Image-based rendering(IBR) applications synthesize novel (or virtual) images,

as taken by virtual cameras at arbitrary viewpoints, using a set of acquired

images. With a range of applications, many algorithms have been proposed for

IBR [4, 5, 80]. However, little research has addressed the fundamental issue of

analyzing the e®ects of di®erent factors on the rendering quality. These factors

include the number of actual cameras and their characteristics (position and

resolution), and the geometry and texture of the scene. The answer to this

fundamental question is crucial for both theoretical and practical purposes; we

cannot e®ectively control the rendering quality and the cost of IBR systems

without accurate quantitative analysis of the rendering quality. In fact, ma ny

IBR systems have to rely on oversampling to counter undesirable aliasing e®ects.

In an early approach, McMillan and Bishop [40] formalized the IBR problem

as a sampling and interpolation problem of the plenoptic function. The plenop-

tic function was de¯ned by Adelson and Bergen [24] to characterize the radiant

energy of the scene at all positions and directions. Chai et al. [49] analyzed the

spectral support of the plenoptic function for layered depth scenes and found

that, under some assumptions, it was bounded only by the minimum and maxi-

mum of the depths, not by the number of layers in the scene. Another approach,

proposed by Zhang and Chen [50], is to analyze the IBR representations using

the surface light ¯eld.

In most existing analysis, the plenoptic function and the surface light ¯eld

are assumed to be bandlimited. However, in general, the plenoptic function

and surface light ¯eld are not bandlimited [50, 52]. In addition, frequency-

based analysis often implies uniform sampling and sinc interpolation, a strict

0This chapter includes research conducted jointly with Prof . Minh Do [77, 79]. We thank
Professors Narendra Ahuja, David Forsyth, Bruce Hajek, and Y i Ma (University of Illinois at
Urbana-Champaign, USA) for valuable hints and criticisms.
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assumption in IBR context. Furthermore, uniform sampling causes aliasing

noise, resulting in objectionable visual artifacts on the rendered images [81].

In this chapter, we propose a new approach to quantitatively analyze the

rendering quality for IBR algorithms using per-pixel depth. For simplicity of

exposition, 2D unoccluded scenes are considered in this chapter; generalizations

to 2D occluded scenes and 3D scenes are possible as shown in the next chapter.

The case of 2D scenes is useful in itself when all the cameras lie in the same

plane, or when actual images are recti¯ed before the rendering process. In

addition, we assume the ideal pinhole camera model. Although this assumption

is somewhat strict, it allows us to derive concrete results. Finally, the analysis

is proposed in the spatial domain; thus it can quantify the rendering quality in

a local portion of interest of the scene.

The main contribution of the chapter is a new methodology that enables

quantitative analysis of the rendering quality of several IBR algorithms using

per-pixel depth. Whether the virtual image is interpolated in image-space or

object-space, the rendering error can be bounded based on the sample values,

sample positions and their errors (i.e., the sample errors and jitters). We name

the proposed methodology theerror aggregation framework, as it successfully

aggregates di®erent sources of error in the same framework. The proposed

framework consists of the following innovative techniques:

1. Nonuniform interpolation framework. In Proposition 3.1, we show that

interpolation using splines [18], commonly used in practice, has errors

that can be bounded based on sample intervals, sample errors, and jitters.

2. Properties of sample intervals. We show in Proposition 3.2 and 3.4 that

the set of available sample positions (provided by actual cameras) can be

approximated as a generalized Poisson process. This approximation allows

closed form formulae to compute the sums of powers of sample intervals,

used to derive the error bounds.

3. Bounds of sample jitters. We derive in Proposition 3.3 a bound for sample

jitters based on the virtual camera, the scene geometry, and the error of

depth estimates.

We apply the error aggregation framework to deriveboundsfor the mean ab-

solute errors (MAE) of two classes of IBR algorithms: image-space interpolation

(Theorem 3.1) and object-space interpolation (Theorem 3.2). The derived error

bounds highlight the e®ects on the rendering quality of various factors including

depth and intensity estimate errors, the scene geometry and texture, the number

of cameras, their positions and resolution. Experiments for synthetic and actual

scenes show that the theoretical bounds accurately characterize the rendering

errors. Based on the proposed analysis, we discuss implications for IBR-related

problems such as camera placement, budget allocation, and bit allocation.
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x = H ¦ (u)

S(u)
u 2 [a; b]

Figure 3.1: The 2D calibrated scene-camera model. The scene surface is modeled
as a parameterized curveS(u) for u 2 [a; b] ½ R. The texture map T(u) is
\painted" on the surface. We assume pinhole camera model with calibrated
projection matrix ¦ = [ R; T ] 2 R2£ 3. The camera resolution is characterized
by the pixel interval ¢ x on the image plane.

The remainder of the chapter is organized as follows. We present the problem

setting in Section 3.2 and the methodology in Section 3.3. Then, we derive error

bounds for an IBR algorithm using image-space interpolation (in Section 3.4)

and an IBR algorithm using object-space interpolation (in Section 3.5). Val-

idations of the bounds are shown in Section 3.6. In Section 3.7, limitations

and implications of the analysis are discussed. Finally, conclusion is given in

Section 3.8.

3.2 Problem Setting

We describe the scene model and the camera model in Sections 3.2.1 and 3.2.2,

respectively. In Section 3.2.3, we brie°y categorize IBR algorithms, in particular

ones using per-pixel depth{the featured algorithm of this chapter. Finally, we

formally introduce the problem de¯nition.

3.2.1 The scene model

Consider the 2D unoccluded scene as in Fig. 3.1. Its surface is modeled as a

2D parameterized curveS(u) : [a; b] ! R2, for some interval [a; b] ½ R. Each

u 2 [a; b] corresponds to a surface pointS(u) = [ X (u); Y (u)]T .

We denote T(u) : [a; b] ! R as the texture map \painted" on the surface

S(u). Given a parametrization of the scene surfaceS(u), the texture map T(u)

is independent of the cameras and the scene geometryS(u).

In this chapter, we assume that both S(u) and T(u) are twice continuously

di®erentiable. We assume further that the surface is Lambertian [67], that is the

images of the same surface point at di®erent cameras have the same intensity.
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3.2.2 The camera model

The scene-to-image mapping. A 2D calibrated pinhole camera is character-

ized by the projection matrix ¦ 2 R2£ 3. For each surface pointS = [ X; Y ]T

in the scene, let eS = [ X; Y; 1]T be the homogeneous coordinate [67] ofS. The

projection matrix ¦ = [ ¼T
1 ; ¼T

2 ]T maps surface pointsS = [ X; Y ]T into image

point x using the projection equation

d ¢[x; 1]T = ¦ ¢[X; Y; 1]T ; (3.1)

where d = ¼T
2

eS is the depth of a surface point eS relative to the camera ¦ . In

this chapter, we use¦ to refer to the camera.

Equation (3.1) implies a mapping from a surface pointS(u), u 2 [a; b], to

its image point x on the camera¦ as

x =
¼T

1
eS(u)

¼T
2

eS(u)
def= H ¦ (u): (3.2)

We name H ¦ (u) the scene-to-image mapping. For unoccluded scenes, the

mapping H ¦ (u) is monotonic in [a; b]. Other properties of H ¦ (u) are shown in

Appendix A.1.

Image formation process. On the image plane of a camera¦ , the image

light ¯eld f ¦ (x) at image point x characterizes the brightnessT(u) of the surface

point S(u) having image at x . In other words, function f ¦ (x) is a perspectively

corrected version of the texture mapT(u):

f ¦ (x) = T(H ¡ 1
¦ (x)) : (3.3)

Let ¢ x be the pixel interval in the image plane, or theresolution, of a camera

¦ . The intensity I ¦ [n] at n-th pixel is the value of the convolution betweenf ¦ (x)

and a sampling kernel' (x) evaluated at the image position xn = n¢ x :

I ¦ [n] = ( f ¦ ¤ ' ) (xn ) =
Z H ¦ (b)

H ¦ (a)
f ¦ (x)' (xn ¡ x)dx: (3.4)

In this chapter, we assume the Dirac delta function as the sampling kernel,

i.e., ' (x) = ±(x). In other words:

I ¦ [n] = f ¦ (n¢ x ): (3.5)

Intensity and depth estimate error. In practice, the depth can be

obtained using the range ¯nders [72, 71] or using structure-from-motion tech-

niques [8, 82]. If¦ is known, it is easy to convert from x and d to [X; Y ]T , and

vice-versa, in the registration process using Equation (3.1). Hence we assume

that a set of surface points [X; Y ]T are available at the actual cameras. Due to

depth estimation errors, the surface points are registered as [X e; Ye]T instead of
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their actual value [X; Y ]T . The magnitude of the error " D = [ X e ¡ X; Ye ¡ Y ]T

is supposedly bounded by some boundED > 0.

The texture is also subject to errors. We assume that in the formation of

actual pixels, noisy estimatesTe(u) of T(u) are registered. Again, the error

"T = Te(u) ¡ T(u) is supposedly bounded by some boundET > 0. In summary:

k" D k2 · ED ; j"T j · ET : (3.6)

3.2.3 IBR algorithms and problem statement

IBR algorithms. Many IBR algorithms have been proposed [4, 5, 80]. Shum

et al. [4] categorized IBR algorithms in a continuum based on the levels of prior

knowledge of the scene geometry. This chapter focuses on IBR algorithms using

per-pixel depth. Other IBR algorithms, using implicit or no geometry, are not

addressed in this chapter.

Among IBR algorithms using per-pixel depth, we focus further on two main

interpolation methods: image-space interpolation [41, 46, 62, 64] andobject-

space interpolation [42, 43, 45]. We remark that this di®erence is only con-

ceptual. In practice, the later methods also have e±cient implementations in

image-space using perspective correct methods [44].

Problem statement. Consider IBR texture mapping algorithms using

explicit depth maps to render the image at virtual camera ¦ v from images of

N actual camerasf ¦ n gN
n =1 . We want to quantify the e®ects on the rendering

quality of the matrices f ¦ n gN
n =1 and ¦ v , the resolution ¢ x , the depth and

intensity error bounds ED and ET , the texture map T(u), and the surface

geometry S(u).

3.3 Methodology

We assume that piecewise linear interpolation, widely used in practice thanks

to its ease of use and decent interpolation quality, is used in the rendering

of the virtual image. Presenting the results for linear interpolation also helps

IBR practitioners ¯nd this chapter directly useful. Similar analysis applies for

interpolation techniques using higher order splines [18, 25].
The linear interpolation bf (x) of f (x) in the interval [ x1; x2], see Fig. 3.2, is

de¯ned as

bf (x)
def
=

x2 ¡ x

x2 ¡ x1
¢[f (x1 + ¹ 1 ) + " 1 ] +

x ¡ x1

x2 ¡ x1
¢[f (x2 + ¹ 2 ) + " 2 ] ; (3.7)

where ¹ 1; ¹ 2 are sample jitters and "1; "2 are sample errors. TheL 1 norm of a

function g(x) is de¯ned as

kgk1 = sup
x

f g(x)g: (3.8)

30



actual samples

measured samples

"1

"2

x1 x2

¹ 1 ¹ 2

f (x)

bf (x)

Figure 3.2: Linear interpolation. The interpolation error can be bounded using
sample errors"1; "2, sample positionsx1; x2, and their jitters ¹ 1; ¹ 2.

Proposition 3.1 Consider a function f (x) that is twice continuously di®eren-

tiable. The linear interpolation bf (x) given in (3.7) has the error bounded by

j bf (x) ¡ f (x)j ·
1
8

(x2 ¡ x1)2 ¢ kf 00k1 + max fj "1j; j"2jg

+ max fj ¹ 1j; j¹ 2jg ¢ kf 0k1 : (3.9)

Proof 3.1 Using the Taylor expansion, there exists»i 2 [x i ; x i + ¹ i ] such that

f (x i + ¹ i ) ¡ f (x i ) = ¹ i f 0(»i ), for i = 1 ; 2. Hence we can bound the error caused

by the sample errors and jitters, for i = 1 ; 2, as

jf (x i + ¹ i ) + " i ¡ f (x i )j · j " i j + j¹ i j ¢ kf 0k1 : (3.10)

In addition, let the linear interpolation using true sample values atx1; x2 be

ef (x) =
x2 ¡ x
x2 ¡ x1

f (x1) +
x ¡ x1

x2 ¡ x1
f (x2):

It can be shown [79] that

jf (x) ¡ ef (x)j ·
1
2

(x ¡ x1)(x2 ¡ x) ¢ kf 00k1 (3.11)

·
1
8

(x2 ¡ x1)2 ¢ kf 00k1 : (3.12)

From (3.10) and (3.12) we indeed verify (3.9).

Remark 3.1 Proposition 3.1 can be considered as a local error analysis,pro-

viding a bound for the interpolation error in individual int ervals. The error

bound in (3.9) is a summation of three terms. Apart from intrinsic properti es

of the function f (x), the ¯rst term depends on the sample intervals(x2 ¡ x1), the
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second term depends on the sample errors"1; "2, and the third term is related

to the jitters ¹ 2; ¹ 2. Note that the bound is tight in the sense that equality does

happen, for example, for linear functionsf (x).

Remark 3.2 Generalization of Proposition 3.1 is possible for interpolation us-

ing splines of higher orders [18]. In these cases, only the ¯rst term in (3.9) will

change to the product of higher powers of the sample intervaljx2 ¡ x1j, the L 1

norm of higher order derivative of f (x), and a constant.

In the next two sections, we analyze the sample intervals and jitters in the

context of IBR. The analysis is then used to derive error bounds of the virtual

images. Note that the analysis is di®erent for both cases since the interpolation

process is conducted in di®erent spaces.

3.4 Analysis for an IBR Algorithm Using
Image-Space Interpolation

We derive the error bound for the Propagation Algorithm [62] as an IBR algo-

rithm using image-space interpolation. The analysis is applicable to other IBR

algorithms [41, 46, 64] under some simplistic assumptions.

We start by giving a brief description of the Propagation Algorithm in Sec-

tion 3.4.1. In Section 3.4.2, properties of sample intervals at the virtual image

plane are derived. We analyze the jitters caused by depth estimate errors in Sec-

tion 3.4.3. In Section 3.4.4, we derive a bound for the rendering error. Finally,

discussions will be given in Section 3.4.5.

3.4.1 Rendering using the Propagation Algorithm

The Propagation Algorithm consists of three main steps as follows:

1. Information Propagation. All the intensity information available at

the actual image planes is propagated to the virtual image plane. This step is

feasible since the depth information is available.

Consider N actual camerasf ¦ i gN
i =1 and a virtual camera ¦ v . We denote

f x i;n g the set of actual pixels of¦ i and f ui;n g are such that x i;n is the image of

2D surface point S(ui;n ) (see Fig. 3.3). Let yi;n be the image ofS(ui;n ) at the

virtual camera ¦ v . These pointsf yi;n g will serve as samples in the interpolation

process performed at virtual image plane.

2. Occlusion Removal. All the points in whose neighborhood there is

another point with su±ciently smaller depth are removed; these points are likely

occluded at the virtual camera. This step is crucial when we consider occluded

scenes. However, this step is irrelevant in this chapter because the scene is

supposed to be free of occlusions.
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S(u)

X

Y

S(ui;n ¡ 1)
S(ui;n )

Se

C i C v

x i;n ¡ 1
x i;n yi;n ¡ 1

yi;n
byi;n

Figure 3.3: Sample intervals and jitters at virtual camera ¦ v . Samplesf yi;n g
in virtual image plane are propagated from actual pixels f x i;n g. The jitter
¹ = byi;n ¡ yi;n is caused by a noisy estimateSe of surface point S(un ).

3. Intensity Interpolation. The virtual image is interpolated using the

remaining samples. We suppose that piecewise linear interpolation is used.

For each actual camera¦ i , for i = 1 ; : : : ; N , let Yi = f yi;n g be the set of

points on the virtual image plane propagated from f x i;n g. Let the union of

fY i gN
i =1 be

Y =
N[

i =1

Yi = f ym gN Y
m =1 ; (3.13)

ordered so thatym · ym +1 . Hence,Y contains all the actual samplespropagated

from the actual cameras.

The sources of rendering errors come from the intensity errors and jitters at

f ym g, in addition to the interpolation technique in use. We address these issues

in the following sections.

3.4.2 Properties of sample intervals

In this section, we want to investigate the properties of the sample intervals

(ym +1 ¡ ym ). As we see later, we are most interested in the summation
P

(ym +1 ¡

ym )k for k 2 N.

We analyze the sample intervals (ym +1 ¡ ym ) by considering each individual

set Yi as a point process. The setY can be regarded as the union of point

processesfY i gN
i =1 . It is known that if the component processesfY i gN

i =1 have

identically distributed intervals, their superposition can be approximated as a

Poisson process in the distribution sense [83, 84, 85, 86].

Lemma 3.1 In each in¯nitesimal [x; x + dx], the point processY, de¯ned as

in (3.13), can be approximated as a Poisson process with density

¸ x (x) =
1

¢ x H 0
v (u)

¢
NX

i =1

H 0
i (u); (3.14)
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whereu = H ¡ 1
v (x) is such that point x is the image of surface pointS(u) at the

virtual camera ¦ v .

Proof 3.2 Consider an in¯nitesimal interval [x; x + dx] on the virtual image

plane. In this interval, we can assume thatH 0
i (u) is constant; thus, sample

intervals (yi;n +1 ¡ yi;n ) can be considered identically distributed. Hence, as

demonstrated in [84], locally, the set of sample pointsY can be approximated as

a Poisson process.

Let [u; u+ du] be the portion of the scene whose image is the interval[x; x + dx]

at the virtual image plane. Henceu = H ¡ 1
v (x) and

dx = H v (u + du) ¡ H v (u) ¼ H 0
v (u)du:

For each actual camera¦ i , for i = 1 ; : : : ; N , the average number of pixels

that are images ofS(¿), for ¿ 2 [u; u+ du], is H 0
i (u)du=¢ x . The average number

of points in Y hence can be computed as

E[Np] =
du
¢ x

NX

i =1

H 0
i (u):

The density ¸ v (x) hence can be obtained as

¸ v (x) =
E [Np]

dx
=

1
¢ x H 0

v (u)
¢

NX

i =1

H 0
i (u):

If the density ¸ x (x) is a constant over the whole interval [a; b], the set of

points Y = f ym gN Y
m =1 can be approximated as a Poisson process. However, since

¸ x (x) changes over [a; b], Y is approximated as ageneralized, or inhomogeneous,

Poisson process [87, 88]. We use this key result to derive properties of sample

intervals.

Proposition 3.2 The point process Y can be approximated as a generalized

Poisson process with density functioņ x (x) satisfying (3.14) for x 2 [H v (a); H v (b)].

The sum of powers of the sample intervals can be computed as

N Y ¡ 1X

n =1

(ym +1 ¡ ym )k ¼ k!Yk ¢ k ¡ 1
x ; (3.15)

where

Yk =
Z b

a

Ã
NX

i =1

H 0
i (u)

! 1¡ k

(H 0
v (u)) k du: (3.16)

Proof 3.3 Using the result of Lemma 3.1, the point processY can be approx-

imated as a Poisson process of density̧ x (x) in each in¯nitesimal interval

[x; x + dx]. As a consequence, the average number of pointsym 2 Y falling
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into [x; x + dx] is ¸ x (x)dx, and the expectation of intervalsE [(ym +1 ¡ ym )k ]

inside [x; x + dx] is equal tok!=¸ x (x)k . Hence:

N Y ¡ 1X

n =1

(ym +1 ¡ ym )k ¼
Z H v (b)

H v (a)

k!
¸ x (x)k ¸ x (x)dx:

By changing the variable under the integral fromx to u, using dx = H 0
v (u)du,

we indeed obtain(3.15).

Note that Yk , called the image-space multiple-view term of orderk, for k 2 N,

depends only on the relative positions of the (actual and virtual) cameras and

the scene. In unoccluded scenes, the derivativeH 0
i (u) has positive in¯mum and

¯nite supremum. As a consequence:

0 < lim
N !1

Yk N k ¡ 1 < 1 : (3.17)

We denote Yk = O(N 1¡ k ) in the remainder of the chapter. In particular,

Y1 = H v (b) ¡ H v (a) is a constant equal to the length of the image ofS(u),

for u 2 [a; b], in the virtual image plane. In practice, computing Yk requires

the knowledge ofH 0
v (u) and f H 0

i (u)gN
i =1 . The derivatives H 0

¦ (u) have a simple

geometrical interpretation as given in Appendix A.1.

3.4.3 Bound for sample jitters

Another source of IBR error is the jitters caused by noisy depth estimates. Let

S = [ X; Y ]T be a surface point, andy be the image ofS at the virtual camera

¦ v . We denote Se = [ X e; Ye]T a noisy estimate ofS with reconstruction error

" D = Se ¡ S, and by to be the image ofSe at ¦ v (see Fig. 3.3). In this section,

we derive a bound for the sample jitters¹ = by ¡ y.

Proposition 3.3 The jitter ¹ = by ¡ y at virtual camera ¦ v caused by the depth

estimate error " D is bounded by

j¹ j · ED Bv : (3.18)

In the above inequality,Bv is determined as follows using the centerC v of the

virtual camera ¦ v :

Bv = sup
u2 [a;b]

½
kC v ¡ S(u)k2

d(u)2

¾
: (3.19)

Proof 3.4 Let " = [ "X ; "Y ; 0]T and p = [ pX ; pY ; 0]T = eS(u) ¡ eC v . We can
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easily verify

eSe = eC v + p + " ;

eS = eC v + p;

¼T
i

eC v = 0 ; i = 1 ; 2:

Denote ¦ v = [ ¼T
1 ; ¼T

2 ]T . Using the above equalities and simple manipula-

tions we get

¹ =
¼T

1
eSe

¼T
2

eSe

¡
¼T

1
eS

¼T
2

eS
=

pT (¼2¼T
1 ¡ ¼1¼T

2 )"

(¼T
2

eSe) ¢(¼T
2

eS)
:

Note that both " ; p have the third coordinate equal to0. Hence, only the

upper-left 2 £ 2 block of matrix (¼2¼T
1 ¡ ¼1¼T

2 ) needs to be investigated. If

we let Rv be the rotation matrix of ¦ v , it can be veri¯ed that the maximum

singular value of the upper-left2 £ 2 block of matrix (¼2¼T
1 ¡ ¼1¼T

2 ) is in fact

det(Rv ) = 1 . Hence

j¹ j ¼
jpT (¼2¼T

1 ¡ ¼1¼T
2 )" j

d(u)2 ·
kpk2 ¢ k" k2

d(u)2 · Bv ED :

The bound ED Bv depends on the depth estimate errorED and the relative

position between the virtual camera and the scene de¯ned byBv .

3.4.4 Error analysis

Combining the results of Proposition 3.2 and 3.3, we derive in this section

an error bound for the mean absolute error (MAE) of the virtual image. Let

e(x) = bf v (x) ¡ f v (x) be the interpolation error and Npixel be the number of

virtual pixels being images of surface pointsS(u) for u 2 [a; b]. The mean

absolute error MAEIM is de¯ned as

MAE IM =
1

Npixel

N pixelX

n =1

je(n¢ x )j: (3.20)

Theorem 3.1 The mean absolute errorMAE IM of the virtual image is bounded

by

MAE IM ·
3Y3

4Y1
¢ 2

x kf 00
v k1 + ET + ED Bv kf 0

v k1 ; (3.21)

where Y1; Y3 are de¯ned as in (3.16), Bv is as in (3.19), and ED ; ET are as

in (3.6).

Proof 3.5 Note that the n-th virtual pixel has position xn = n¢ x in the virtual
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image plane, henceMAE TM can be approximated as

MAE IM ¼
1

H v (b) ¡ H v (a)

Z H v (b)

H v (a)
je(x)jdx: (3.22)

We break down the integral above into intervals[ym ; ym +1 ) and apply Proposi-

tion 3.1 to each interval to get

Z H v (b)

H v (a)
je(x)jdx =

N Y ¡ 1X

n =1

Z ym +1

ym

je(x)jdx

·
N Y ¡ 1X

n =1

h1
8

(ym +1 ¡ ym )3kf 00
v k1

+( ym +1 ¡ ym )
¡
ET + ED Bv kf 0

v k1
¢i

=
3
4

Y3¢ 2
x kf 00

v k1 + Y1 (ET + ED Bv kf 0
v k1 ) :

In the last inequality,
P

(ym +1 ¡ ym )k are replaced byk!Yk ¢ k ¡ 1
x using (3.16).

Substituting the above bound of the integral
R

je(x)jdx into (3.22), we indeed

obtain (3.21).

The result of Theorem 3.1 can be extended to other error measures (e.g.,

mean square error) and other interpolation techniques (e.g., using higher order

splines).

3.4.5 Discussion

The error bound in (3.21) consists of three terms. In the ¯rst term, kf 00
v k1

and Y1 depend only on the virtual camera position, where asY3 depends on the

camera con¯guration and the scene. We can considerY3 as the spatial infor-

mation contributed by the actual cameras. Overall, the ¯rst term characterizes

the gain of using multiple actual cameras.

To decrease the ¯rst term in an IBR setting, we can either use actual cameras

of ¯ner resolution ¢ x or increase the number of actual camerasN . Theorem 3.1

indicates that both methods yield comparable e®ects on the rendering quality.

Moreover, the error bound decays asO(¸ ¡ 2), where

¸ = N=¢ x (3.23)

can be interpreted as the local density of actual samples.

The second term,ET , characterizes the noise level at actual cameras. This

can be considered as the limit of the rendering quality imposed by the quality

of actual images.

The third term contains the precision ED of range ¯nders and two factors

kf 0
v k1 ; Bv that depend on the relative position between the virtual camera and
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the scene. OnlyED , among three factors, can be reduced by using better range

¯nders. The remaining two factors, kf 0
v k1 and Bv , are ¯xed once the virtual

camera is speci¯ed.

3.5 Analysis for an IBR Algorithm Using
Object-Space Interpolation

We analyze the rendering quality of a basic IBR algorithm using object-space

interpolation. After a brief description of the algorithm in Section 3.5.1, we

investigate the sample intervals and jitters in Sections 3.5.2 and 3.5.3, respec-

tively. In Section 3.5.4, we derive an error bound for the virtual image. Finally,

a discussion is given in Section 3.5.5.

3.5.1 A basic algorithm

Interestingly, IBR algorithms using object-space interpolation can be imple-

mented in image-space using perspective correct interpolation [44], although

the texture is conceptually interpolated in object-space. However, to follow

the proposed methodology in Section 3.3, we analyze the rendering quality in

object-space. The analysis is shown for a basic IBR algorithm consisting of

three main steps: surface reconstruction, texture interpolation, and ray-scene

intersection.

1. Surface reconstruction. The scene geometry is reconstructed using

the depths available from actual cameras. We consider linear interpolation in

this step.

Consider an actual camera¦ i and let f x i;n g be the positions of actual pixels

on the actual image plane of¦ i . Suppose that x i;n is the image of 2D point

S(ui;n ) in the scene. LetUi = f ui;n g and let

U =
N[

i =1

Ui = f um g; (3.24)

ordered so that um · um +1 , be the union of visible points on the surface of the

scene. In this step, the surface geometryS(u) is reconstructed using samples

S(um ), for um 2 U.

2. Texture interpolation. The texture map T(u) is linearly interpolated

on the reconstructed surface using the intensity of actual pixels.

Let bS(u), for u 2 [a; b], be the linear approximation of the sceneS(u) at the

surface reconstruction process. The set of samples are visible points

f bS(um ) = S(um ) + " m ; um 2 Ug:

3. Ray-scene intersection. For each virtual pixel y, draw a ray connecting
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actual samples
measured samples

S(u)S(bu)
S(u1)

S(u2)

S(u3)

bS(u1)
bS(u2)

bS(u3)bS(bu)

y

by

C vX

Y

Figure 3.4: The reconstructed scenebS(u) using piecewise linear interpolation.
The intensity at virtual pixel y is the interpolated intensity at an approximated
surface point bS(bu) instead of the actual surface pointS(u).

y and the camera centerC v . Determine where this line intersects with the

surface of the scene. The intensity ofy will be the brightness of the intersection

point.

In Fig. 3.4, for each point y in the image plane of virtual camera ¦ v , let

S(u) be the surface point whose image isy. Hence, S(u) is supposed to be

the intersection of the scene surface and the ray connecting the virtual camera

center C and the pixel position y. However, since only the approximated scene
bS(u) is available, the intersection is at bS(bu) instead. Note that the parameter

u is also jittered to bu.

The primary sources of errors come from the interpolated texturebT(u) and

the jitters ( u ¡ bu) caused by the interpolated geometrybS(u). Our approach in

this section defers from the derivation in Section 3.4 due to two aspects. First,

the surface reconstruction and texture interpolation are independent of the vir-

tual camera. Second, the ray-scene intersection step results in jittered samples

of the interpolated texture as the rendered image, whereas in Section 3.4, the

virtual image is rendered using jittered samples of the texture function.

3.5.2 Properties of sample intervals

We ¯rst derive the properties of the sample intervals (um +1 ¡ um ) on the scene

surface. Similarly to our derivation in Section 3.4.2, we assume that the intervals

(ui;n +1 ¡ ui;n ) are identically distributed in each in¯nitesimal interval. Hence,

the union U can be approximated as a generalized Poisson process of some

density function ¸ u (u). Similarly to Proposition 3.2, we can derive the following

result.

Proposition 3.4 The union U de¯ned as in (3.24) can be approximated as a
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generalized Poisson process with density

¸ u (u) =
1

¢ x
¢

NX

i =1

H 0
i (u): (3.25)

As a consequence, we have

N U ¡ 1X

n =1

(um +1 ¡ um )k ¼ k!Uk ¢ k ¡ 1
x ; (3.26)

where

Uk =
Z b

a

Ã
NX

i =1

H 0
i (u)

! 1¡ k

du: (3.27)

Note that Uk , called object-space multiple-view terms of orderk 2 N, de-

pends only on the relative positions of the actual cameras and the scene. Unlike

Yk , terms Uk are independent of the virtual camera, since the interpolation

uses only information provided by the actual cameras. Furthermore, it can be

veri¯ed that Uk decays asO(N 1¡ k ) when N is large.

3.5.3 Bound for sample jitters

As shown in Fig. 3.4, the surfaceS(u) is approximated by bS(u). Hence, the

ray-scene intersection step results in the brightness at surface pointbS(bu) instead

of S(u). Let y and by be the images ofS(u) and bS(u). We ¯rst bound the depth

interpolation errors kS(u) ¡ bS(u)k2, and use this result to bound the jitters

(y ¡ by), similar to Section 3.4.3.

Lemma 3.2 The Euclidean norm of the depth interpolated errors in an interval

[um ; um +1 ] can be bounded as

kS(bu) ¡ bS(u)k2 ·
1
8

(um +1 ¡ um )2K S + ED ; (3.28)

where

K S =
³

kX 00k2
1 + kY 00k2

1

´ 1=2
: (3.29)

Proof 3.6 Let the depth estimate errors at surface pointsS(um ) and S(um +1 )

be " m = [ "X;m ; "Y;m ]T and " m +1 = [ "X;m +1 ; "Y;m +1 ]T . Denote ° = ( u ¡

um )=(um +1 ¡ um ) 2 [0; 1]. The interpolated depth bS(u) = [ bX (u); bY (u)]T

is
bS(u) = ° ¢[S(um +1 ) + " m +1 ] + (1 ¡ ° ) ¢[S(um ) + " m ]:
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Using techniques similar to those of Proposition 3.1, we canderive

j bX (u) ¡ X (u)j ·
1
8

(um +1 ¡ um )2kX 00k1

+ ° ¢ j"X;m +1 j + (1 ¡ ° ) ¢ j"X;m j:

Similar inequality can also be derived forj bY (u)¡ Y (u)j. Using the generalized

triangular inequality 1 we obtain

kbS(u) ¡ S(u)k2 =
q

j bX (u) ¡ X (u)j2 + j bY (u) ¡ Y (u)j2

·
1
8

(um +1 ¡ um )2K S + ° k" m +1 k2 + (1 ¡ ° )k" m +1 k2

·
1
8

(um +1 ¡ um )2K S + ED :

In (3.29), K S can be interpreted as the geometrical complexity of the scene.

In particular, if the scene is piecewise linear,K S = 0. We can use the result of

Lemma 3.2 to derive the following proposition.

Proposition 3.5 Let y and by be the image ofS(u) and bS(u), for bu 2 [um ; um +1 ],

at the virtual camera ¦ v . The jitter (y ¡ by) is bounded by

jy ¡ byj ·
1
8

(um +1 ¡ um )2K SBv + ED Bv ; (3.30)

where Bv is as in (3.19) and K S is de¯ned as in (3.29).

Proof 3.7 Similar to (3.19), the jitter (y ¡ by) can be bounded based onkS(u) ¡
bS(u)k2 as

jy ¡ byj · k S(bu) ¡ bS(u)k2 ¢Bv

·
1
8

(um +1 ¡ um )2K SBv + ED Bv :

3.5.4 Error analysis

In practice, the texture map T(u) is linearly interpolated in each interval [um ; um +1 )

to get an approximation bT(u) for u 2 [a; b]. We ¯rst derive the pointwise inten-

sity interpolation error
³

bT(bu) ¡ T(u)
´

before combining them, in Theorem 3.2,

to analyze the overall rendering quality.

Lemma 3.3 The interpolation error
³

bT(bu) ¡ T(u)
´

at each pointu 2 [um ; um +1 ]

is bounded by

j bT(bu) ¡ T(u)j ·
1
8

K 1(um +1 ¡ um )2 + K 2; (3.31)

1The generalized triangular inequality states that for any r eal number f ai ; bi gi =1 ;2;3 , the
following inequality holds:

Ã

(
3X

i =1

ai )2 + (
3X

i =1

bi )2

! 1=2

·
3X

i =1

¡
a2

i + b2
i
¢1=2

:
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where

K 1 = kT00k1 + Bv K Skf 0
v k1 (3.32)

K 2 = ET + ED Bv kf 0
v k1 : (3.33)

Proof 3.8 Using (3.9) for the interval [um ; um +1 ), the intensity error is bounded

by

j bT(bu) ¡ T(bu)j ·
1
8

(um +1 ¡ um )2kT00k1 + ET : (3.34)

Using the mean value theorem, there existsµ 2 [y; by] such thatf v (by)¡ f v (y) =

(by ¡ y)f 0
v (µ). Hence

jT(bu) ¡ T(u)j = jf v (by) ¡ f v (y)j · j by ¡ yj ¢ kf 0
v k1

· 1
8 (um +1 ¡ um )2K SBv kf v k1 + ED Bv kf 0

v k1 : (3.35)

The last inequality used the result of Proposition 3.5. Finally, using (3.34)

and (3.35) we indeed obtain

j bT(bu) ¡ T(u)j · j bT(bu) ¡ T(bu)j + jT(bu) ¡ T(u)j

·
1
8

K 1(um +1 ¡ um )2 + K 2:

At this point, we are ready to bound the rendering error. Let e(x) = bT(bu) ¡

T(u) be the interpolation error and Npixel be the number of virtual pixels being

images of the sceneS(u). The mean absolute errorMAE OBJ is de¯ned as

MAE OBJ =
1

Npixel

N pixelX

n =1

je(n¢) j: (3.36)

Theorem 3.2 The mean absolute errorMAE OBJ of the virtual image is bounded

by

MAE OBJ ·
3
4

¢
M v K 1U3

H v (b) ¡ H v (a)
¢ 2

x + ET + ED Bv kf 0
v k1 ; (3.37)

where U3 and K 1 are as in (3.27), (3.32), and M v is such that

M v = max
u2 [a;b]

f H 0
v (u)g: (3.38)

Proof 3.9 Since K 2, de¯ned as in (3.33), is a constant, we can approximate

MAE OBJ as

MAE OBJ ¼ K 2 + 1
¢ x N pixel

RH v (b)
H v (a) (je(x)j ¡ K 2) dx (3.39)

· K 2 + M v
¢ x N pixel

Rb
a

³
j bT(bu) ¡ T(u)j ¡ K 2

´
du: (3.40)
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In the last inequality, we use the fact thatdx · M v du. The integral can be

broken down into integrals in intervals [um ; um +1 ). Using (3.31) of Lemma 3.3

we get

Z b

a

³
j bT(bu) ¡ T(u)j ¡ K 2

´
du

·
N U ¡ 1X

n =1

Z um +1

um

1
8

K 1(um +1 ¡ um )2du

·
1
8

K 1

N U ¡ 1X

n =1

(um +1 ¡ um )3

¼
3
4

K 1U3¢ 2
x :

Substituting the last inequality into (3.40), and replacing ¢ x Npixel ¼ H v (b) ¡

H v (a) and K 1; K 2 as in (3.32), (3.33), we indeed obtain(3.37).

Again, we note that this result can be extended to other error measures (e.g.,

mean square error) and other interpolation techniques (e.g., using higher order

splines).

3.5.5 Discussion

The error bound in (3.37) shares the last two terms with the bound in (3.21);

their interpretation can be found in Section 3.4.5. In the ¯rst term of the bound,

K 1M v =(H v (b)¡ H v (a)) is a constant depending only on the scene and the virtual

camera. The factor U3¢ 2
x , depending on the relative position of the scene and

the actual cameras, decays asO(¸ ¡ 2), where ¸ = N=¢ x is the local density of

actual samples.

The major di®erence of the bound in Theorem 3.2 compared to its counter-

part of Theorem 3.1 resides in the multiple-view termsU3 and Y3. In fact, U3

depends only on the positions of the actual cameras, whereasY3 also incorpo-

rates the virtual camera position. For planar sloping surfaces, comparison of

the ¯rst terms in Theorems 3.1 and 3.2 may explain why interpolation using

perspective correction [44] is necessary.

3.6 Validations

We show numerical experiments to validate the error bound of Theorem 3.1;

validations for Theorem 3.2 are similar. The experiments use a synthetic scene

in Section 3.6.1 and an actual scene in Section 3.6.2. Section 3.6.2 also serves

as an example on estimating the bound in practice.
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Figure 3.5: The mean absolute error MAE (solid) and the theoretical bound
(dashed) plotted against the number of actual pixels in the loglog axis. Both
the MAE and the theoretical bound decay with slope s = ¡ 2, consistent with
the result of Theorem 3.1.

3.6.1 Synthetic scene

We adopt a simple translational camera con¯guration in our experiments. All

the actual and virtual cameras are located in theX -axis, looking to the direction

of the Y-axis. The 2D scene consists of a °at surface with distanced = 10 to the

cameras and the textureT(u) = sin( u) painted on the surface. We use camera

resolution ¢ x = 0 :01.

To validate the ¯rst term in (3.21), we set ET = ED = 0, and vary the

number of actual camerasN . In Fig. 3.5, we show the mean absolute error MAE

(solid) and the theoretical bound (dashed) plotted against the number of actual

pixels in the loglog axis. We observe that both the MAE and the theoretical

bound decay with slopes = ¡ 2, consistent with the result of Theorem 3.1.

To validate the second term, we useN = 10 actual cameras andED = 0,

and vary ET . For each actual pixel, the intensity estimate error "T is randomly

chosen in the interval [¡ ET ; ET ] using the uniform distribution. In Fig. 3.6, we

plot the mean absolute error MAE (solid) and the theoretical bound (dashed)

against ET . Note that the error bound is about two times the MAE, since the

error bound is derived for the worst case, whereas the actual errors tend to

follow the average case.

Finally, we validate the third term of (3.21) by using N = 10 actual cameras

and setting ET = 0. The depth estimate errors " D are randomly chosen in

interval [ ¡ ED ; ED ] using the uniform distribution. In Fig. 3.7, we plot the mean

absolute error MAE and the theoretical bound against the depth estimate error

bound ED . We observe that the MAE indeed appears below the error bound

and approximately linear to ED .
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Figure 3.6: The mean absolute error MAE (solid) and the theoretical bound
(dashed) plotted against the texture estimate error boundET .
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Figure 3.7: The mean absolute error MAE (solid) and the theoretical bound
(dashed) plotted against the depth estimate error boundED .
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Figure 3.8: The scene's ground truth at the virtual cameraCv = 4.

3.6.2 Actual scene

A data set of a real scene is used to validate the error bound of Theorem 3.1.2

This section can also be considered as an example of the computation of various

factors in the error bound in practice.

All the actual and virtual cameras are located in the X -axis looking to the

direction of the Y-axis. The virtual image at Cv = 4 is rendered, scanline by

scanline, using the images and depth maps from actual camerasC1 = 2 and

C2 = 6. The mean absolute error is computed using the available ground truth

(see Fig. 3.8). The error bound of Theorem 3.1 is approximately computed,

based on the data set, as follows.

Intensity estimate error bound ET . Since the intensities are integers in

the interval [1; 255], we adopt

ET = 1=2: (3.41)

Bound of jitters ED Bv . The data set provide the disparities, instead of

depth, between two actual camerasC1 = 2 and C2 = 6. Hence, the bound of

jitters ED Bv is directly computed instead of the depth estimate error bound

ED . Since the disparities betweenC1 = 2 and C2 = 6 are rounded to quarters

of pixels, the disparities betweenC1; C2 and Cv = 4 are rounded to one eighth

of a pixel. Hence, we adopt

ED Bv = 1=16: (3.42)

The resolution ¢ x . The images in have 450 columns assumedly spread

over the image line of length 2. Hence

¢ x = 1=225: (3.43)

2The data set is available at http://cat.middlebury.edu/st ereo/newdata.html.
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In practice, it turns out that the choice of the image line's length, and hence the

resolution ¢ x , is not crucial. Its e®ect will be neutralized by the computation

of kf 0
v k1 and kf 00

v k1 .

Multiple-view terms Yk . For a camera located atX = X 0 looking to the

direction of the Y-axis, its projection matrix is

¦ =

"
1 0 ¡ X 0

0 1 0

#

: (3.44)

Suppose that the scene surface is a parameterized curve [X (u); Y (u)]T , for

u 2 [a; b]. The corresponding scene-to-image mapping is

H ¦ (u) =
X (u) ¡ X 0

Y(u)
: (3.45)

In this camera setting with two actual cameras at C1 = 2 and C2 = 6 and

the virtual camera at Cv = 4, it can be veri¯ed that

H 0
1(u) + H 0

2(u) = 2 H 0
v (u); u 2 [a; b]: (3.46)

As a consequence,

Y3=Y1 = 1=4: (3.47)

Note that the length of the image line does not a®ect the ratioY3=Y1, although

it does changeYk individually.

L 1 norms kf 0
v k1 and kf 00

v k1 . Since there exist noises and discontinuities

in the virtual image f v , a preprocessing step is necessary to estimatekf (k )
v k1 .

To limit the e®ect of noise, using a similar idea to edge detection techniques [89],

the virtual image is ¯rst convolved with the derivative of order k of a Gaussian

kernel

g¾(x) =
1

p
2¼¾2

¢exp
µ

x2

2¾2

¶
: (3.48)

In our experiment, we use the ¯lter of length 10 pixels and¾= 1. Next, since

the virtual image is discontinuous, we use the 95%-point value (instead ofthe

maximum or 100%-point value) of the convolution as theL 1 norm.

For each scanline, the error bounds of Equation (3.21) are computed using

the procedure described above. In Fig. 3.9 we show the mean absolute error

(solid) of the virtual image rendered using the Propagation Algorithm [62] com-

pared to the estimated error bounds (dashed) for each scanline. Observe that

the bound is tighter for scanlines with smoother intensity function f v (x).

3.7 Discussion and Implications

We discuss the case where actual cameras have di®erent resolutions in Sec-

tion 3.7.1. In Sections 3.7.2{3.7.4, implications of the proposed analysis on
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the Propagation Algorithm compared to the estimated error bound of Theo-
rem 3.1 (dashed) for each scanline of the scene shown in Fig. 3.8.

three IBR-related problems{namely, camera placement, budget allocation, and

bit allocation{are brie°y considered. The discussion focuses on the result of

Theorem 3.1; similar implications can be drawn from Theorem 3.2. Finally,we

present limitations of the proposed analysis in Section 3.7.5.

3.7.1 Actual cameras with di®erent resolutions

The proposed analysis can be generalized to the case where actual cameras

f ¦ i gN
i =1 have di®erent resolutionsf ¢ i gN

i =1 . In this case, we need to modify

the computation of the density function ¸ x (x) in Lemma 3.1. As a result,

Equation (3.15) of Proposition 3.2 will also be changed to

N Y ¡ 1X

n =1

(ym +1 ¡ ym )k ¼
Z b

a

Ã
NX

i =1

H 0
i (u)
¢ i

! 1¡ k

(H 0
v (u)) k du: (3.49)

This equation suggests that di®erent actual cameras contribute di®erent

amounts of information to the rendering process, depending on the relative posi-

tion of the cameras to the scene and the resolution ¢i (via the ratio H 0
i (u)=¢ i ).

In particular, the larger H 0
i (u), the more information is contributed by the ac-

tual camera ¦ i . Intuitively, as suggested in Appendix A.1, the derivative H 0
i (u)

is larger if the camera is pointed toward the scene.

3.7.2 Where to put the actual cameras?

Theorem 3.1 suggests a potential application for camera placement. Suppose

that we render a virtual image at camera¦ v given a number ofN actual cameras
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with given depth and texture estimate errors ED ; ET . We want to ¯nd the

optimal camera positions, that is, optimal matrices f ¦ gN
i =1 .

Given that ED ; ET , and N are ¯xed, the last two terms of the error bound

in Theorem 3.1 are also ¯xed. To decrease the error bound, the only way is to

minimize Y3 (see (3.16) fork = 3):

Y3 =
Z b

a

Ã
NX

i =1

H 0
i (u)

! ¡ 2

(H 0
v (u))3 du:

In caseY3 cannot be analytically minimized, numerical methods can be used

to approximate the optimal con¯guration.

3.7.3 Budget allocation

Suppose that a monetary budgetc is available to buy range ¯nders and cameras

of cost cD ; cT , respectively. The question is to how to allocate the budgetc into

range ¯nders and cameras to best render the virtual image at¦ v .

We assume that, due to the registration process, the depth estimate error

ED is a function of the number of range ¯nders ND . The texture estimate

error ET and resolution ¢ x are similar for all cameras. Hence, the error bound

in (3.21) depends only onY3 and ED . The optimal budget allocation is to

use N ¤
D range ¯nders and N ¤

T cameras, whereN ¤
D ; N ¤

T are the solution of the

following optimization:

min
cD N D + cT N T · c

n 3¢ 2
x kf 00

v k1

4Y1
Y3(NT ) + Bv kf 0

v k1 ED (ND )
o

: (3.50)

3.7.4 Bit allocation

Suppose that depth maps and images are recorded at the encoder and need

to be transmitted over some communications channel to IBR decoders. The

virtual image is rendered at the decoder upon receiving the depth maps and

images. The question is how to distribute the channel capacityR into RD for

depth maps andRT for images to optimize the rendering quality of the virtual

images.

Let ET = ET (RT ) and ED = ED (RD ) be distortions of intensity and depth

images corresponding to the transmission rateRT ; RD . Since the ¯rst term of

Theorem 3.1 does not depend onED ; ET , our optimal distribution of channel

capacity f R¤
D ; R¤

T g is the solution of the following optimization:

min
R D + R T · R

n
ET (RT ) + Bv kf 00

v k1 ED (RD )
o

: (3.51)
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Table 3.1: Comparison of momentsE [(ym +1 ¡ ym )k ], for N = 10 actual cameras,
with moments of the approximated Poisson process.

k = 1 k = 2 k = 3
Experiments 0:1 0:184 0:0046

Theory using Poisson 0:1 0:2 0:0060
Relative error 0% 8% 23%

3.7.5 Limitations

Limitations of the proposed analysis in Theorems 3.1 and 3.2 are due to two

approximations, namely, the Poisson approximations and the integral approxi-

mations.

In Propositions 3.2 and 3.4, actual samplesY are approximated as a general-

ized Poisson process. It is known [83, 90] that the superposition of i.i.d. renewal

processes converges to a Poisson process with convergence rate of orderN ¡ 1.

To have an idea, note that the convergence rate of the Central Limit Theorem

is of order N ¡ 1=2. Table 3.1 shows a comparison of momentsE [(ym +1 ¡ ym )k ]

to values calculated using Proposition 3.2.

In (3.22) and (3.39), the mean absolute errors are approximated as an inte-

gral using the trapezoid rule. This approximation's error can be bounded by [91,

Chapter V]

E trapezoid ·
H v (b) ¡ H v (a)

12
¢ 2

x kf 00
v k1 : (3.52)

Hence, a more conservative error bound can be used by adding the termE trapezoid

in the right-hand side of (3.21).

Moreover, the second approximation also suggests why the resolution of the

virtual camera does not appear in Theorems 3.1 and 3.2. We expect that the

resolution ¢ x of the virtual camera does appear for nonideal sampling kernels

' (x).

3.8 Conclusion

We proposed a new framework, theerror aggregation framework, to quantita-

tively analyze the rendering quality of IBR algorithms using per-pixel depth.

We showed that IBR errors can be bounded based on sample intervals, sample

errors, and jitters. We approximated actual samples as a generalized Poisson

process and bounded sample jitters. We derived, in Theorems 3.1 and 3.2, the-

oretical bounds for the mean absolute errors (MAEs). The bounds successfully

captured, as validated by synthetic and actual scenes, the e®ects of various fac-

tors such as depth and intensity estimate errors, the scene geometry and texture,

the number of cameras and their characteristics. We also discussed implications

of our analysis for camera placement, budget allocation, and bit allocation.

For future research, we would like to further analyze the relationship between
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¦ and H 0
¦ (u) and characterize the mean and variance of the rendering errors.

This chapter's results may be extended to weakly calibrated scene-camera con-

¯gurations. Generalizations of the results to 2D occluded scenes and 3D scenes

will be presented in the next chapter.
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CHAPTER 4

QUANTITATIVE ANALYSIS
FOR IMAGE-BASED
RENDERING: 2D OCCLUDED
SCENES AND 3D SCENES

4.1 Introduction

Although many algorithms and systems have been proposed forimage-based

rendering (IBR) applications [3, 5], little research has been addressing the fun-

damental issue of analyzing the e®ects of the scene and the camera setting on

the rendering quality. Understanding these e®ects is crucial to controlling the

rendering quality and the cost of IBR systems. Many IBR algorithms in practice

have to rely on oversampling to counter undesirable aliasing e®ects.

In the previous chapter, we quantitatively analyzed, for 2D unoccluded

scenes, the quality of IBR texture mapping algorithms using explicit depth

maps. We proposed anerror aggregation framework to bound rendering er-

rors based on the sample values, sample positions, and their errors, whether

the virtual image is interpolated in image-space or object-space. The union of

sample positions is approximated as a generalized Poisson process, while the

sample jitters are bounded based on the relative position between the virtual

camera and the scene. We derived error bounds for several IBR algorithms

using per-pixel depth. The derived error bounds show the e®ects on the render-

ing quality of various factors including depth and intensity estimate errors, the

scene geometry and texture, the number of actual cameras, their positions and

resolutions. Implications of the proposed analysis include camera placement,

budget allocation, and bit allocation.

In this chapter, we extend the analysis in [77] to 2D occluded scenes and

3D unoccluded scenes. The main contribution of the chapter is a methodology

armed with a set of techniques to analyze the rendering quality of IBR algo-

rithms, assuming per-pixel depth as inputs, using image-space interpolation.

To analyze 2D occluded scenes, we measure, in Proposition 4.1, the e®ects of

jumps in sample intervals around the discontinuities of the virtual image, re-

0This chapter includes research conducted jointly with Prof . Minh Do [78].
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sulting in additional terms in the error bound. We extend the analysis to 3D

unoccluded scenes by proposing novel machineries, including an error bound for

triangulation-based linear interpolation and the use of Poisson Delaunay trian-

gles' properties{classical results from stochastic geometry [92]. We ¯ndthat, in

smooth regions, triangulation-based linear interpolation for 3D scenes results in

a decay orderO(¸ ¡ 1) of the mean absolute error (MAE), where ¸ is the local

density of actual samples, compared toO(¸ ¡ 2) for 2D scenes. This intriguing

¯nding implies that for 3D scenes, building IBR systems that can simplify to

2D, such as adopting image recti¯cations and planar camera con¯gurations, be-

sides decreasing the complexity, also increases the decay order of the rendering

errors in smooth regions.

This chapter is organized as follows. The problem setup is presented in

Section 4.2. We present analysis of 2D occluded scenes in Section 4.3. Gener-

alization to 3D is given in Section 4.4. Finally, we o®er concluding remarks in

Section 4.5.

4.2 Problem Setup

We start with a description of the scene model in Section 4.2.1. The camera

model is presented in Section 4.2.2. We describe our models for the 3D case that

are parallel with 2D models considered in the previous chapter. This description

also introduces the notation used in the chapter. Finally, we state the problem

in Section 4.2.3.

4.2.1 The scene model

The surface of the scene is modeled as a 3D parameterized surfaceS(u; v) :

­ ! R3, for some region ­ ½ R2. The texture map T(u; v) : ­ ! R is an

intensity function \painted" on the surface S(u; v). We assume that the surface

is Lambertian [67], that is, images of the same surface point at di®erentcameras

have the same intensity. Furthermore, we assume that the surfaceS(u; v) and

the texture T(u; v) have derivative of second order at all points and all directions,

except at the discontinuities.

4.2.2 The camera model

A 3D pinhole camera (Fig. 4.1) is characterized by the positional matrix ¦ =

[¼1; ¼2; ¼3]T 2 R3£ 4. For each surface pointS = [ X; Y; Z ]T in the scene, let its

homogeneous coordinate [67] beeS = [ X; Y; Z; 1]T . The projection equation is

d ¢[x; y; 1]T = ¦ ¢[X; Y; Z; 1]T ; (4.1)
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Figure 4.1: The 3D calibrated scene-camera model. The scene surface is modeled
as a 3D parameterized surfaceS(u; v) for ( u; v) 2 ­ ½ R2. The texture T(u; v)
is \painted" on the surface. We assume pinhole camera model with calibrated
positional matrix ¦ 2 R3£ 4. The camera resolution is characterized by the pixel
intervals ¢ x ; ¢ y in horizontal and vertical direction on the image plane.

where d = ¼T
3 ¢eS is the depth of S relative to ¦ . We derive a scene-to-image

mapping H ¦ (u; v) from surface points S(u; v), for ( u; v) 2 ­, to their image

points (x; y) as

"
x

y

#
def= H ¦ (u; v) =

"
H x (u; v)

H y (u; v)

#

; (4.2)

where

H x (u; v) =
¼T

1 ¢eS(u; v)

¼T
3 ¢eS(u; v)

; H y (u; v) =
¼T

2 ¢eS(u; v)

¼T
3 ¢eS(u; v)

: (4.3)

The Jacobian matrix of H ¦ is

@H ¦ (u; v)
@(u; v)

=

"
@Hx =@u @Hx =@v

@Hy =@u @Hy =@v

#

: (4.4)

At the image plane of a camera¦ , the image light ¯eld f ¦ (x; y) at image

point ( x; y) characterizes the \brightness" T(u; v) of surface pointS(u; v) having

image at (x; y). In other words, the image light ¯eld f ¦ (x; y) is perspectively

corrected from the texture map T(u; v) as

f ¦ (x; y) = T
¡
H ¡ 1

¦ (x; y)
¢
: (4.5)

Let ¢ x ; ¢ y be the sample intervals in horizontal and vertical directions of

the discrete grid on which the actual images are sampled from the image light

¯eld. We refer the product ¢ x ¢ y to the resolution of the camera. If ' (x; y) is

the sampling kernel of the camera¦ , the pixel intensity I ¦ [m; n] is the value of

the convolution of f ¦ (x; y) and ' (x; y), evaluated at (xm ; yn ) = ( m¢ x ; n¢ y ),
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as follows:

I ¦ [m; n]= ( f ¦ ¤ ' )(xm ; yn ) (4.6)

=
Z

H ¦ (­)
f ¦ (x; y) ¢' (xm ¡ x; yn ¡ y)dxdy: (4.7)

In this chapter, we assume the ideal pinhole camera model with the Dirac

delta function as the sampling kernel ' (x; y), i.e., ' (x; y) = ±(x; y). In other

words,

I ¦ [m; n] = f ¦ (m¢ x ; n¢ y ): (4.8)

Depth and intensity estimate error. In practice, the depth and the

intensity at actual pixels are subjected to errors" D = [ X e ¡ X; Ye ¡ Y; Ze ¡ Z ]T

and "T = Te(u; v) ¡ T(u; v), respectively. We suppose that " D and "T are

bounded by ED and ET , that is,

k" D k2 · ED ; j"T j · ET : (4.9)

4.2.3 Problem statement

IBR algorithms. Many IBR algorithms have been proposed [3, 5, 80]. This

chapter is concerned with IBR algorithms using per-pixel depth and image-space

interpolation [41, 46, 62, 64]. We present our analysis for the Propagation Algo-

rithm [62], although the proposed techniques are applicable to other algorithms.

We assume that piecewise linear interpolation is used for the 2D case and

Delaunay triangulation-based linear interpolation is used for the 3D case. Both

methods are widely used in practice thanks to their simplicity and decent in-

terpolation qualities. Furthermore, we hope to help IBR practitioners ¯nd the

chapter directly useful. We note that the proposed analysis also applies for

interpolation techniques using higher order splines [18, 93].

Problem statement. Suppose the virtual image at virtual camera ¦ v is

rendered using images and depth maps ofN actual camerasf ¦ i gN
i =1 . We want

to quantify the e®ects on the rendering quality of projection matricesf ¦ i gN
i =1

and ¦ v , the resolution ¢ x ¢ y , the depth and intensity estimate error bound

ED ; ET , the texture map T(u; v), and the surface geometryS(u; v).

4.3 Analysis for 2D Scenes

In this section, we extend the analysis proposed in the previous chapter to 2D

occluded scenes. We present the new methodology in Section 4.3.1 and revisit

relevant results of [77] in Section 4.3.2. In Section 4.3.3, we analyze the rendering

quality for 2D occluded scenes.
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Figure 4.2: Linear interpolation of a discontinuous function.

4.3.1 Methodology

We extend the methodology proposed in [77] to consider discontinuous functions.

The linear interpolation bf (x) of f (x) in an interval [ x1; x2] is de¯ned as

bf (x) =
x2 ¡ x
x2 ¡ x1

¢f (x1) +
x ¡ x1

x2 ¡ x1
¢f (x2): (4.10)

In the presence of sample errors"1; "2 and sample jitters ¹ 1; ¹ 2 (see Fig. 4.2),

the sample valuesf (x1); f (x2) in (4.10) are replaced byf (x1 + ¹ 1) + "1; f (x2 +

¹ 2) + "2, respectively. The L 1 norm of a function g(x) is de¯ned as

kgk1 = sup
x

f g(x)g: (4.11)

In the following, we bound the linear interpolation error for functions wit h

only one discontinuity. Note that general analysis is possible, although less

elegant, and provides similar ¯ndings. First, for simplicity we introduced not a-

tions:

¢ 1 = xd ¡ x1; ¢ 2 = x2 ¡ xd; ¢ = x2 ¡ x1: (4.12)

Proposition 4.1 Consider a function f (x) that is twice continuously di®eren-
tiable except at the discontinuity xd. The aggregated error over[x1; x2] of the
linear interpolation given in (4.10), de¯ned below, can be bounded by

Z x 2

x 1

j bf (x) ¡ f (x)j ·
1

8
¢ 3 ¢ kf 00k1 +

1

2
¢ 1¢ 2 ¢ jJ1 j +

3

2
¢ ¢ jJ0 j

+¢
³

max
i =1 ;2

fj " i jg + max
i =1 ;2

fj ¹ i jg ¢ kf 0k1

´
; (4.13)

where J0; J1 are the jumps of f (x) and its derivative at the discontinuity xd:

J0 = f (x+
d ) ¡ f (x ¡

d ); J1 = f 0(x+
d ) ¡ f 0(x ¡

d ): (4.14)
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Proof 4.1 See Appendix A.2.

Remark 4.1 The bound in Proposition 4.1 is proposed for the aggregated er-

ror over the interval [x1; x2]. This is di®erent from the pointwise bound given

in [77, Proposition 1]. Proposition 4.1 can be considered asa local analysis,

providing a bound for the interpolation error in individual intervals. Because of

the discontinuity at xd, the aggregated error increases by an amount of

1
2

¢ 1¢ 2 ¢ jJ1j +
3
2

¢ ¢ jJ0j:

If J0 = J1 = 0 , the bound of Proposition 4.1 simpli¯es to the case where

f (x) is twice continuously di®erentiable in[x1; x2] (see [77, Proposition 1]). The

bound is characterized by sample intervals, sample errors,and jitters, in addition

to intrinsic properties of f (x). Similar remarks can be drawn for interpolation

using splines of higher orders [18].

The bound in (4.13) suggests that we need to investigate the sample inter-

vals, especially observed sample intervals around the discontinuities, and sample

jitters in the context of IBR.

4.3.2 Part I revisited { analysis for 2D scenes without
occlusions

We state in this section key results of the previous chapter for 2D unoccluded

scenes. The presentation helps to understand previous results and the devel-

opment of this chapter. In Proposition 4.2, we present the property of sample

intervals. We give a bound for sample jitters in Proposition 4.3. We provide an

error bound, in Theorem 4.1, for the virtual images rendered using the Propa-

gation Algorithm [62].

Properties of sample intervals. On the image plane of the virtual camera

¦ v , let Y be the set of pointspropagatedfrom actual pixels [62].

Proposition 4.2 The point process Y can be approximated as a generalized

Poisson process with density function

¸ x (x) =
1

¢ x H 0
v (u)

¢
NX

i =1

H 0
i (u); (4.15)

whereu = H ¡ 1
v (x). The sum of powers of the sample intervals can be computed

as
N Y ¡ 1X

n =1

(ym +1 ¡ ym )k ¼ k! Yk ¢ k ¡ 1
x ; (4.16)

57



where

Yk =
Z b

a

Ã
NX

i =1

H 0
i (u)

! 1¡ k

(H 0
v (u)) k du: (4.17)

Bounds for sample jitters. Let S be a surface point and Se be an

erroneous estimate ofS. We suppose thaty and by are images ofS and Se at

the virtual camera ¦ v .

Proposition 4.3 The jitter ¹ = by ¡ y, at virtual camera ¦ v with camera center

C v , caused by depth estimate errors is bounded by

j¹ j · ED Bv : (4.18)

In the above inequality,Bv is determined as

Bv = sup
u2 [a;b]

½
kC v ¡ S(u)k2

d(u)2

¾
: (4.19)

Bound for rendering errors. Apply the methodology of Proposition 4.1,

using the results of Proposition 4.2 and 4.3, we can derive an error bound for

the rendered image of the Propagation Algorithm.

Theorem 4.1 The mean absolute error MAEPA of the virtual image using the

Propagation Algorithm is bounded by

MAE PA ·
3Y3

4Y1
¢ 2

x kf 00
v k1 + ET + ED Bv kf 0

v k1 ; (4.20)

where f v (x) is the virtual image, Yk is de¯ned as in (4.17), Bv is as in (4.19),

and ED ; ET are as in (4.9).

Remark 4.2 In the ¯rst term of (4.20), Y1 = H v (b) ¡ H v (a) is independent of

the number of actual camerasN . The value of Y3, called image-space multiple-

view term of third order, encodes the geometrical position between the actual

cameras and the scene. Note that the ¯rst term has decay orderO(¸ ¡ 2), where¸

is the local density of actual samples. The second term is theintensity estimate

error bound ET of the actual cameras. The third term relates to the depth

estimate error boundED and the geometrical position between the scene and the

virtual camera (via Bv ).

4.3.3 Analysis for 2D occluded scenes

In this section, we consider 2D occluded scenes by introducing two adjustments

compared to the analysis in [77]. First, the presence of occlusions requires modi-

¯cation of the sample density ¸ x (x). Second, intervals containing discontinuities

58



X

Y

C

xd;n xd;n +1
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d;n
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d;n

u+
d;n +1

u¡
d;n +1

V¦ (u) = 0

V¦ (u) = 1

intensity discontinuity

depth discontinuity

ut;m

Figure 4.3: A 2D occluded scene. We di®erentiate two kinds of discontinuities:
those due to occlusions (such asxd;n with parameters u+

d;n and u¡
d;n ) and those

due to the texture T(u) (such asx t;n with parameter ut;m ).

of the virtual image, either caused by the intensity or depth discontinuities, need

to be analyzed using the new methodology of Proposition 4.1. For simplicity,

we assume that all the occluded samples are successfully removed, and the set

of remaining samples are dense enough so that there exists at most one disconti-

nuity in each sample interval. General analysis is possible, though less elegant,

and produces similar ¯ndings.

Modi¯cation of the sample density. Consider a 2D occluded scene (see

Fig. 4.3). For a camera¦ , we de¯ne the visibility function

V¦ (u) =

(
1; if S(u) is visible at ¦

0; if S(u) is not visible at ¦ :
(4.21)

Proposition 4.2 is modi¯ed as

¸ x (x) =
1

¢ x H 0
v (u)

¢
NX

i =1

Vi (u)H 0
i (u); (4.22)

where u is the parameter of the surface pointS(u) having image at x:

u = arg min
u

f d(u) : H ¦ (u) = xg: (4.23)

For this modi¯cation, Yk will also be changed to

Yk =
Z b

a

Ã
NX

i =1

Vi (u)H 0
i (u)

! 1¡ k

(Vv (u)H 0
v (u)) k du: (4.24)

Intuitively, the modi¯cation in (4.24) signi¯es that, if a surface point S(u)

is occluded at an actual camera¦ i , or equivalently Vi (u) = 0, this camera

¦ i contributes no information to the rendering of virtual pixel x = H v (u).

Similarly, if S(u) is occluded at the virtual camera¦ v , or equivalently Vv (u) = 0,
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xnym n
ym n +1

¸ x (x) ¸ x (x)

Figure 4.4: The observed interval [ym n ; ym n +1 ] around a discontinuity xn of the
virtual image f v (x). Note that the sample density function ¸ x (x) may or may
not, depending on whetherxn 2 X d or xn 2 X t , be discontinuous atxn .

no information from actual cameras is necessary.

Incorporation of jumps. We di®erentiate two categories of discontinuities

at the virtual image f v (x), namely, the depth discontinuities and the texture

discontinuities (see Fig. 4.3). The depth discontinuities are at image object

boundaries (backgrounds and foregrounds). LetXd be the set of depth discon-

tinuities. For each point xd;n 2 X d, denote

u+
d;n = lim

x ! x +
d;n

H ¡ 1
v (x); (4.25)

u¡
d;n = lim

x ! x ¡
d;n

H ¡ 1
v (x): (4.26)

The above equations are well de¯ned sinceH ¡ 1
v (x) is a one-to-one mapping

everywhere except at discontinuities off v (x). Intuitively, u+
d;n is the parameter

on the background andu¡
d;n is the parameter on the foreground, or vice-versa.

The texture discontinuities are discontinuities of the texture T(u). We denote

the set of texture discontinuities Xt . For consistency, we also use notationu+
t;n

and u¡
t;n , as in (4.25) and (4.26), forx t;n 2 X t , though they are in fact equal.

For each discontinuity

xn 2 X = Xt

[
Xd; (4.27)

the interval [ ym n ; ym n +1 ] containing xn is called an observed interval (or sam-

pled interval{see Fig. 4.4). The following lemma is a classical result ofPoisson

processes.

Lemma 4.1 [88, 87] Let (ym n +1 ¡ ym n ) be the observed interval around each

discontinuity xn . The length of intervals ¢ 2;n = ym n +1 ¡ xn and ¢ 1;n =

xn ¡ ym n are independent and follow exponential distributions of parameter

¸ (H v (u+
n )) and ¸ (H v (u¡

n )) , respectively.
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Corollary 4.1 The following equations hold:

E [ym n +1 ¡ ym n ] =
1

¸ (H v (u+
n ))

+
1

¸ (H v (u¡
n ))

(4.28)

E [¢ 1;n ¢ 2;n ] =
1

¸ (H v (u+
n ))

¢
1

¸ (H v (u¡
n ))

: (4.29)

We de¯ne operators J 0(f ) and J 1(f ) as

J 0(f ) = sup
x

½¯
¯ lim

y! x +
f (y) ¡ lim

y! x ¡
f (y)

¯
¯
¾

(4.30)

J 1(f ) = sup
x

½¯
¯ lim

y! x +
f 0(y) ¡ lim

y! x ¡
f 0(y)

¯
¯
¾

: (4.31)

Theorem 4.2 The mean absolute errorMAE PA of the virtual image using the

Propagation Algorithm is bounded by

MAE PA ·
3Y3

4Y1
¢ 2

x kf 00
v k1 + ET + ED Bv kf 0

v k1

+
3
2

D0¢ x J 0(f v ) +
1
2

D1¢ 2
x J 1(f v ); (4.32)

where f v (x) is the virtual image, Bv is as in (4.19), Yk is de¯ned in (4.24),

J 0(f ) and J 1(f ) are de¯ned in (4.30) and (4.31), and D0; D1 are

D0 =
X

x d 2X

1
¸ x (x+

d )
+

1
¸ x (x ¡

d )
(4.33)

D1 =
X

x d 2X

1
¸ x (x+

d )
¢

1
¸ x (x ¡

d )
: (4.34)

Proof 4.2 The proof is similar to the proof of [77, Theorem 1]; we need tocon-

sider in addition the aggregated error in observed intervals [ym n ; ym n +1 ] around

jumps f xn 2 X g. Hence, the error bound needs to increase by an amount

3
2

jym n +1 ¡ ym n j ¢ J0(f ) +
1
2

¢ 1;n ¢ 2;n ¢ J1(f ): (4.35)

The summation these terms, for allxn , in fact results in the additional fourth

and ¯fth terms.

Remark 4.3 Compared to Theorem 4.1, the bound in(4.32) has additional

fourth and ¯fth terms to incorporate the discontinuities of t he virtual image

f v (x). Overall, the fourth term decays asO(¸ ¡ 1) and the ¯fth term decays as

O(¸ ¡ 2), where ¸ is the local density of actual samples.
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4.4 Analysis for 3D Scenes

In this section, we extend the analysis into the 3D case. A natural generalization

of piecewise linear interpolation into 2D is the Delaunay triangulation-based

linear interpolation. We present the 3D methodology for individual triangles

in Section 4.4.1. Then, we show properties of Poisson Delaunay triangles in

Section 4.4.2 and a bound for sample jitters in Section 4.4.3. Finally, an error

analysis for 3D scenes without occlusions is given in Section 4.4.4.

4.4.1 Methodology

In this section, we investigate the interpolation error for an individual trian-

gle. We de¯ne the L 1 norm of the gradient r f (x; y) and the Hessian matrix

r 2f (x; y) as follows:

kr f (x; y)k1 = sup
(x;y )

fkr f (x; y)k2g (4.36)

kr 2f (x; y)k1 = sup
(x;y )

©
¾max

£
r 2f (x; y)

¤ª
; (4.37)

where ¾max [M] denotes the maximum singular value [94] of a matrixM. The

linearly interpolated value at a 2D point X inside a triangle ABC is de¯ned

as
bf (X ) =

SA
S

f (A ) +
SB
S

f (B ) +
SC
S

f (C ); (4.38)

where SA ; SB ; SC , and S denote the area of trianglesXBC ; AXC ; ABX ,

and ABC , respectively. In other words, bf (X ) is a bivariate linear function

that is equal to f (X ) at locations A ; B , and C (see Fig. 4.5). In the presence

of sample errors and jitters, sample valuesf (A ); f (B ), and f (C ) in (4.38) are

replaced byf (A + ¹ A )+ "A ; f (B + ¹ B )+ "B , and f (C + ¹ C )+ "C , respectively.

Proposition 4.4 We consider a function f (x; y) that is twice continuously dif-

ferentiable. The linear interpolation on a triangle given in (4.38) has the error

bounded by

j bf (x; y) ¡ f (x; y)j ·
1
2

R2 ¢ kr 2f k1 + max fj " jg

+ max fk ¹ k2g ¢ kr f k1 ; (4.39)

where R is the circumcircle radius of the triangle ABC .

Proof 4.3 We show the proof for" = 0 and ¹ = 0. In this case, the error bound

in the right-hand side of (4.39) reduces into the ¯rst term. The techniques to

incorporate the sample error (second term) and jitter (third term) are similar

to the proof of [77, Proposition 1].

Let O be the center of the circumcircle of triangleABC . Using vector
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bf (X )

f (A )

f (B )

f (C )

O
R

Figure 4.5: Triangulation-based linear interpolation is often used with the De-
launay triangulation. For each triangle, the interpolation error can be bounded
using the circumcircle radius R, the sample errors" , and the sample jitters ¹
(see Proposition 4.4).

manipulations, it can be shown that

R2 ¡ k X ¡ Ok2
2 =

SA
S

k¢ A k2
2 +

SB
S

k¢ B k2
2 +

SC
S

k¢ C k2
2; (4.40)

where ¢ A = A ¡ X ; ¢ B = B ¡ X ; and ¢ C = C ¡ X . Using the 2D Taylor

expansion we can obtain

f (A ) = f (X ) + r f (X )T ¢¢ A +
1
2

¢ T
A ¢ r 2f (X a) ¢¢ A

for some point X a . Similar equations can be obtained forB and C as well.

Hence,

j bf (X ) ¡ f (X )j =
1
2

¢
¯
¯
¯
SA
S

¢ T
A ¢ r 2f (X a) ¢¢ A +

SB
S

¢ T
B ¢ r 2f (X b) ¢¢ B +

SC
S

¢ T
C ¢ r 2f (X c) ¢¢ C

¯
¯
¯

·
1
2

kr 2f k1

³ SA
S

k¢ A k2
2 +

SB
S

k¢ B k2
2 +

SC
S

k¢ C k2
2

´

·
1
2

kr 2f k1 R2:

The bound in (4.39) suggests that we need to investigate the properties of

Delaunay triangles and the sample jitters. The next two sections will present

these properties.
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4.4.2 Properties of Poisson Delaunay triangles

We assume in this section that the scene is unoccluded. We start by proposing an

equivalence of [77, Lemma 1] for the 2D case. A 2D processp is calledidentically

distributed scattering [92] if the density of points of p over an arbitrary region !

follows a ¯xed probability mass distribution independent of ! . Intuitively, there

is a profound similarity between the 1D and 2D cases, since they are both related

to the probability mass function (pmf) of the number of points falling inside an

arbitrary region. Hence, in the following, we assume that the Hypothesis 4.1

below holds.

Hypothesis 4.1 The superposition of 2D point processes with identically dis-

tributed scattering property can be approximated as a 2D Poisson process.

On the image plane of the virtual camera ¦ v , let Y be the set of points

propagatedfrom actual pixels [62].

Proposition 4.5 The point processY can be approximated as a 2D generalized

Poisson process with density function

¸ (x; y) =
1

¢ x ¢ y

NX

i =1

det
³

@H i =@(u; v)
´

det
³

@H v =@(u; v)
´ ; (4.41)

where (u; v) = H ¡ 1
v (x; y).

Proof 4.4 Since we assume that Hypothesis 4.1 holds, in each in¯nitesimal re-

gion, the point processY can be considered as a 2D Poisson process. Hence,

overall, Y can be considered as a generalized Poisson process. The density

¸ (x; y) can be computed, similarly to [77, Section III.B], as the average number

of points falling on an unit area. This indeed results in (4.41).

Once we approximate the set of propagated pointsY as a 2D Poisson process,

the next step is to investigate properties of Poisson Delaunay triangles. In the

following, we exploit results from stochastic geometry.

Lemma 4.2 [92, Chapter 5] The circumradius R and the areaS of Delaunay

triangles of a 2D Poisson process of density̧ are independent. The circumra-

dius R has the probability density function (pdf)

2(¼¸)2r 3e¡ ¼¸r 2
; r > 0: (4.42)

The momentsE [Sk ] can be computed using explicit formula. In particular

E [R2] =
2

¼¸
; E [S] =

1
2¸

; E [S2] =
35

8¼2¸ 2 : (4.43)
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4.4.3 Bound for sample jitters

Let S = [ X; Y; Z ]T be a surface point, andp be the image ofS at the virtual

camera ¦ v . We denote Se = [ X e; Ye; Ze]T a noisy estimate of S with recon-

struction error " D = Se ¡ S, and bp the image ofSe at ¦ v .

Proposition 4.6 The jitter ¹ = bp¡ p, at virtual camera ¦ v with camera center

C v , caused by depth estimate errors can be bounded by

k¹ k2 ·
p

2ED Bv : (4.44)

In the above inequality,Bv is computed as

Bv = sup
(u;v )2 ­

½
kC v ¡ S(u; v)k2

d(u; v)2

¾
: (4.45)

Proof 4.5 The jitter ¹ is a two-coordinate vector ¹ = [ ¹ x ; ¹ y ]T . It can be

shown [77, Section III.C] that the norm of both¹ x and ¹ y is bounded byED Bv .

Hence

k¹ k2 =
q

¹ 2
x + ¹ 2

y ·
p

2ED Bv :

The bound ED Bv depends on the depth estimate errorED and the relative

position between the virtual camera and the scene de¯ned byBv .

4.4.4 Analysis for 3D unoccluded scenes

Consider the intensity function f v (x; y) = T
¡
H ¡ 1

v (x; y)
¢

at virtual camera ¦ v .

Let e(x; y) = bf v (x; y) ¡ f v (x; y) be the interpolation error and N ­ be the set

of virtual pixels ( m; n) being images of surface pointsS(u; v) for ( u; v) 2 ­.

Denote # N ­ the number of pixels in N ­ . The mean absolute errorMAE PA is

de¯ned as

MAE PA =
1

# N ­

X

(m;n )2N ­

je(m¢ x ; n¢ y )j: (4.46)

Theorem 4.3 The mean absolute error MAEPA of the virtual image using the

Propagation Algorithm is bounded by

MAE PA ·
X 2

¼X1
¢ x ¢ y kr 2f v k1 + ET +

p
2ED Bv kr f v k1 ; (4.47)

where f v is the the virtual image, Bv is as in (4.45), ED ; ET are as in (4.9),

and

X k =
Z

­

Ã
NX

i =1

det
µ

@H i (u; v)
@(u; v)

¶ ! 1¡ k µ
det

µ
@H v (u; v)

@(u; v)

¶¶ k

dudv: (4.48)
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Proof 4.6 Let D be the set of Delaunay triangles, and­ xy = H v (­) be the

image region of the surfaceS(u; v) at the virtual camera. The MAE PA can be

approximated as

MAE PA ¼
1

S­ xy

Z

­ xy

je(x; y)jdxdy (4.49)

=
1

S­ xy

X

¢ i 2D

Z

¢ i

je(x; y)jdxdy

·
1

S­ xy

X

¢ i 2D

S¢ i

³ 1
2

R2
i kr 2f v k1 + max fj " jg

+ max fk ¹ k2g ¢ kr f v k1

´
: (4.50)

In each in¯nitesimal patch d! around (x; y) 2 ­ xy , we can approximate

R2 ¼ 2=(¼¸(x; y)) (see Lemma 4.2). Hence

X

¢ i 2D

S¢ i R
2
i ¼

Z

­ xy

2
¼¸(x; y)

d! =
2X 2

¼
¢¢ x ¢ y : (4.51)

By changing the variables from(x; y) to (u; v), and substituting (4.51) into

inequality (4.50), we indeed get(4.47).

Remark 4.4 The ¯rst term of (4.47), X 1 = S­ xy , is the area of the scene's

image on the virtual image plane and does not depend on the actual camera

con¯guration. The value of X 2, called 3D multiple-view term of second order,

encodes the geometrical information of the actual cameras and the scene. We

note that X 2 decays with orderN ¡ 1 when N tends to in¯nity. The ¯rst term

also depends on the resolution¢ x ¢ y . Overall, in smooth regions, the ¯rst term

has decay orderO(¸ ¡ 1), where ¸ is the local density of actual samples. The

second term is the intensity estimate error boundET . The third term relates

to the depth estimate error boundED (linearly) and the geometrical position

between the scene and the virtual camera (viaBv ).

Remark 4.5 A notable di®erence between the 3D case and the 2D case resides

in the decay order of the ¯rst term. In (4.20), the ¯rst term has decay order

O(¸ ¡ 2), while in (4.47) the decay order isO(¸ ¡ 1). To see this di®erence, note

that the ¯rst term in inequality (4.39) contains R2 having the same dimension

with the sample density̧ , whereas in (4.13), the ¯rst term contains (x2 ¡ x1)2 of

the same dimension witḩ 2. This intriguing ¯nding supports a common practice

of conducting image recti¯cations to simplify the rendering process into 2D.

Rectifying images using bilinear interpolation o®ers a decay of O(¸ ¡ 2) in smooth

regions, and O(¸ ¡ 1) around the discontinuities. Hence, the image recti¯cation

not only reduces the complexity, but also increases the decay rate in smooth

regions from O(¸ ¡ 1) to O(¸ ¡ 2). Obviously, one needs to take into account that

image recti¯cations cause additional errors elsewhere.
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Table 4.1: Experimental values of E [R2]; E [S], and E[S2] in the case where
N = 10 actual cameras are used, compared to theoretical values of Poisson
Delaunay triangles.

E [R2] E [S] E [S2]
Experiments 0:0568 0:05 0:003845

Poisson Delaunay triangles 0:0637 0:05 0:004432
Relative error 11% 0% 13%
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MAE
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Theoretical bound

M
A

E

number of actual pixels

Figure 4.6: The rendering errors plotted against the total number of actual
pixels. We note the errors indeed have decayO(¸ ¡ 1), where ¸ is the local
sample density, as stated in Theorem 4.3.

4.4.5 Numerical experiments

Support for a positive answer of Hypothesis 4.1 is shown in Table 4.1. Experi-

mental values forR2; S, and S2 of Delaunay triangles, whereN = 10 actual cam-

eras are used, are computed and compared to the theoretical values of Poisson

Delaunay triangles proposed in Lemma 4.2. Observe that the approximations

are relatively accurate.

Next, we validate the error bound (4.47) of Theorem 4.3 for a 3D synthetic

scene consisting of a °at surface with constant depthz = 10 and the texture

map T(u; v) = sin( u) + sin( v). The Propagation Algorithm [62] is used for a

planar camera con¯guration. All the actual and virtual cameras are placed in

the xy-plane and focus to the direction of thez-axis. Speci¯cally, N = 10 actual

cameras are randomly placed in the square of dimensions 2£ 2 centered around

the virtual camera position at [5; 5; 0]T .

To validate the ¯rst term, we set ED = ET = 0 and plot in Fig. 4.6 the

mean absolute errors MAE (solid) and the error bound (dashed) against the

total number of actual pixels (equivalent to the local density of actual samples

¸ ). The variation of ¸ is obtained by changing the resolution ¢x ¢ y . Observe

that the MAE indeed decays asO(¸ ¡ 1), conforming to Theorem 4.3.
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Figure 4.7: The mean absolute error (MAE) (solid) and the theoretical bound
(dashed) plotted against the intensity estimate error bound ET .

To validate the second term, we ¯x ¢ x = ¢ y = 0 :02 and ED = 0, and vary

ET . For each value ofET , the intensity estimate errors are chosen randomly

in the interval [ ¡ ET ; ET ] following the uniform distribution. In Fig. 4.7, we

show the mean absolute error MAE (solid) and the theoretical bound (dashed)

plotted against the intensity estimate error bound ET . Observe that the actual

MAE °uctuates around one half of the error bound. The reason is that the error

bound of Theorem 4.3 is derived for the worst case, whereas the actual MAE

tends to follow the average errors.

Finally, we validate the last term of (4.47) by ¯xing ¢ x = ¢ y = 0 :02; ET =

0, and varying ED . For each value ofED , the depth estimate errors are cho-

sen randomly in the interval [¡ ED ; ED ] following the uniform distribution. In

Fig. 4.8, we show the mean absolute error MAE (solid) and the theoretical

bound (dashed) plotted against the depth estimate error boundED . Observe

that the MAE indeed appears below the error bound and approximately linear

to ED .

4.5 Conclusion

We presented a quantitative analysis for IBR algorithms to 2D occluded scenes

and 3D unoccluded scenes, extending the error aggregation framework proposed

in the previous chapter. To analyze 2D occluded scenes, we modi¯ed the sample

density function and measured the e®ects of jumps in observed sample intervals

around the discontinuities. For 3D unoccluded scenes, we proposed an error

bound for the technique of triangulation-based linear interpolation and exploited

properties of Poisson Delaunay triangles. We derived an error bound for the

mean absolute error (MAE) of the virtual images. The error bound successfully
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Figure 4.8: The mean absolute error (MAE) (solid) and the theoretical bound
(dashed) plotted against the depth estimate error boundED .

captures the e®ects of the scene and the camera con¯guration to the rendering

quality, as validated by numerical experiments. In particular, the proposed

analysis suggests that the decay order of the MAE isO(¸ ¡ 1) for 3D scenes and

O(¸ ¡ 2) for 2D scenes. An implication is that building IBR systems that can

simplify to 2D, besides reducing the complexity, also increases the decay rate of

the rendering errors from O(¸ ¡ 1) to O(¸ ¡ 2) in smooth regions.

Limitations. The proposed analysis approximates summations as integrals

in Equations (4.49) and (4.51), and assembles actual samples as a generalized

Poisson process. These approximations can be further analyzed, though it might

not lead to further understanding in the context of IBR.

Future work. We would like to prove Hypothesis 4.1, extend the analysis

to 3D occluded scenes, and analyze the mean and variance of the rendering

errors.
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CHAPTER 5

MINIMAX DESIGN OF
HYBRID MULTIRATE FILTER
BANKS WITH FRACTIONAL
DELAYS

5.1 Introduction

This chapter is motivated by multichannel sampling applications. Figure 5.1(a)

shows the model of a fast analog-to-digital (A/D) converter used to obtain a

desired high-resolution signal. An analog input signal f (t) is convolved with

an antialiasing ¯lter Á0(t) (also known as the sampling kernel function) whose

Laplace transform is ©0(s). The output of the convolution is then sampled

at small sampling interval h. The desired high-resolution signal is denoted by

y0[n] = ( f ¤ Á0) (nh) for n 2 Z.

Figure 5.1(b) depicts actual low-resolution signalsf x i [n]gN
i =1 , sampled using

slow A/D converters. The same analog inputf (t) is sampled in parallel usingN

slow A/D converters. In the i -th channel, for 1 · i · N , the input f (t) is ¯rst

convolved with a function Ái (t) (with Laplace transform © i (s)) before being

delayed by D i > 0 (to compensate for di®erent time arrivals). The low-rate

signals x i [n] = ( f ¤ Ái ) (nMh ¡ D i ), for n 2 Z, can be used to synthesize the

high-resolution signal y0[n] of Fig. 5.1(a).

The goal of this chapter is to design the digital synthesis ¯lter banksf Fi (z)gN
i =1

to minimize the errors, de¯ned using a criterion below, of a hybrid induced error

system K shown in Fig. 5.2. Once the digital synthesis ¯lters are designed, an

approximate of the high-rate signal y0[n] can be computed, with a delay ofm0

samples, as the summation ofN channels after the ¯ltering process.

We assume that, through construction and calibration, information about

the sampling kernel functions f ©i (s)gN
i =0 and delays f D i gN

i =1 are available. In

such case, we want to design a corresponding optimal synthesis ¯lter bank

f Fi (z)gN
i =1 so that the resulting system depicted in Fig. 5.2 can be subse-

0This chapter includes research conducted jointly with Prof . Minh Do [95, 96]. We thank
Dr. Masaaki Nagahara (Kyoto University, Japan) for sharing the code of the paper [97], and
Dr. Trac Tran (Johns Hopkins University, USA) and Dr. Geir Du llerud (University of Illinois
at Urbana-Champaign) for insightful discussions.
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f (t) ©0(s) Sh y0[n]

(a) The desired high-rate system.

f (t) e¡ D 1 s

e¡ D 2 s

e¡ D N s

©1(s)

©2(s)

©N (s) SMh

SMh

SMh

. . .. . . . . .

x1[n]

x2[n]

xN [n]

(b) The low-rate system.

Figure 5.1: (a) The desired high-rate system, (b) the low-rate system. The fast-
sampled signaly0[n] can be approximated using slow-sampled signalsf x i [n]gN

i =1 .

f (t)

#M

#M

y0[n]

x1[n]

xN [n]

by0[n]

©0(s)

©1(s)

©N (s)

Sh

Sh

She¡ D 1 s

e¡ D N s " M

" M

z¡ m 0

F1(z)

FN (z)

e[n]
¡

. . . . . . . . .. . .. . . . . .

Figure 5.2: The hybrid induced error systemK with analog input f (t) and digital
output e[n]. We want to design synthesis ¯lters f Fi (z)gN

i =1 based on the transfer
function f ©i (s)gN

i =0 , the fractional delays f D i gN
i =1 , the system delay tolerance

m0, the sampling interval h, and the super-resolution rateM to minimize the
H 1 norm of the induced error systemK.
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quently put in operation for arbitrary input signals f (t). A special case of this

multichannel sampling setup is calledtime-interleaved A/D converters where

©i (s) = © 0(s) and D i = ih for i = 1 ; 2; : : : ; N . Then the synthesis ¯lter bank

can simply interleave samples, i.e.Fi (z) = zi . Multichannel sampling extends

time-interleaved A/D converters by allowing mismatch in sampling kernels be-

fore slow A/D converters [31]. Moreover, in many cases, the time delaysf D i gN
i =1 ,

although they can be measured [98, 99, 100, 101], cannot be controlled precisely.

Under these conditions, the multichannel sampling setup studied in this chapter

can be ideally applied.

We note that, in Fig. 5.2, system K is a hybrid system with analog input

f (t) and digital output e[n]. Among components ofK, the transfer functions

f ©i (s)gN
i =0 characterize antialiasing ¯lters, and f D i gN

i =1 model system setup

such as arrival times or sampling positions. Many practical systems, such as

electrical, mechanical, and electromechanical systems, can be modeled by dif-

ferential equations [102, Chapter 1]. Their Laplace transforms are thus rational

functions of form A(s)=B(s) for some polynomialsA(s) and B (s), while e¡ D i s

is not rational when D i is fractional (i.e., noninteger). Working with delay op-

erators e¡ D i s is necessary, though nontrivial, to keep intersample behaviors of

the input signals.

In the design of the synthesis ¯lter banks f Fi (z)gN
i =1 , the system perfor-

mances are evaluated using theH 1 approach [103, 104, 105]. In the digital,

we work on the Hardy spaceH 1 that consists of all complex-value transfer

matrices G(z) which are analytic and bounded outside of the unit circlejzj > 1.

HenceH 1 is the space of transfer matrices that are stable in the bounded-input

bounded-output sense. TheH 1 norm of G(z) is de¯ned as the maximum gain

of the corresponding system. If a systemG, analog or digital, has input u and

output y , the H 1 norm of G is [103]

kGk1 = sup
n

kyk2 : y = Gu; kuk2 = 1
o

; (5.1)

where the norms are regular Euclidean normk¢k; that is,

kx k2 =

Ã
1X

n = ¡1

kx [n]k2

! 1=2

for digital signals x [n], and

kx k2 =
µ Z 1

¡1
kx (t)k2dt

¶ 1=2

for analog signalsx (t).

The use of H 1 optimization framework, originally proposed by Shenoy et

al. [106] for ¯lter bank designs, o®ers powerful tools for signal processing prob-

lems. In our case, using theH 1 optimization framework, the induced error is
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uniformly small over all ¯nite energy inputs f (t) 2 L 2(R) (i.e., kf (t)k2 < 1 ).

Furthermore, no assumptions off (t), such as band-limitedness, are necessary.

We minimize the worst induced error over all ¯nite energy inputs f (t). This

is important since many practical signals are not bandlimited [107]. Finally,

sinceH 1 optimization is performed in the Hardy space, the designed ¯lters are

guaranteed to be stable.

The chapter's main contributions are twofold. First, we use sampled-data

control techniques to convert the design problem forK into a H 1 norm equiv-

alent ¯nite-dimensional model-matching problem. The conversion enables the

design synthesis ¯lters, IIR or FIR, to minimize the H 1 norm of K. The norm

equivalence property reduces the induced errors compared to methods that ap-

proximate the fractional delays by IIR or FIR ¯lters [108, 109, 110, 111]. IIR

synthesis ¯lters are designed using available solutions to the model-matching

problem [103, 104]. To design FIR ¯lters, we use linear matrix inequality (LMI)

methods [112, 113]. Although FIR ¯lter designs using LMI methods have been

proposed for other problems [97, 114, 115], to our knowledge, only IIR ¯lter

designs are proposed for related problems [95, 99, 105, 116]. The second main

contribution, shown in Section 5.5, is the robustness of the designed induced

error system K against delay estimate errors.

Related work. Herley and Wong addressed the problem of the sampling and

reconstruction of an analog signal from a periodic nonuniform set of samples

assuming that the input signals have ¯xed frequency support [117]. Marziliano

and Vetterli also addressed the problem of reconstructing a digital signal from a

periodic nonuniform set of samples using Fourier transform [118]. However, in

both cases, the authors only considered a restricted set of input signals that are

bandlimited. Moreover, they only consideredrational delays, that is, the set of

samples is the set left after discarding a uniform set of samples in a periodic

fashion (the ratio between the delays and the sample intervals is a rational

number, hence the name rational delays). Jahromi and Aarabi considered the

problem of estimating the delaysf D i gN
i =1 and of designing analysis and synthesis

¯lters to minimize the H 1 norm of an induced error system [99]. However, the

authors only considered integer delays orapproximation of fractional delays by

IIR or FIR ¯lters. Shu et al. addressed the problem of designing the synthesis

¯lters for a ¯lter bank to minimize the H 1 norm of an induced system [105].

Their problem was similar to the problem considered in this chapter, except that

it did not consider the fractional delays but a rational transfer function instead.

Nagahara et al. synthesized IIR and FIR ¯lters to approximate fractional delays

using H 1 optimization [114, 115]. Although, strictly speaking, their problem

is not SR, the result therein can be considered as a special case of our problem

when M = N = 1.

Problem formulation. We consider the hybrid systemK illustrated in Fig. 5.2.
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The H 1 norm of the systemK is de¯ned as

kKk1 := sup
n kek2

kf k2

o
; (5.2)

where kek2 is the l2 norm of e[n] and kf k2 is the L 2 norm of f (t).

We want to design (IIR or FIR) synthesis ¯lters f Fi (z)gN
i =1 to minimize

kKk1 . The inputs of our algorithms consist of the strictly proper transfer

functions f ©i (s)gN
i =0 , the positive fractional delays f D i gN

i =1 , the system delay

tolerancem0 ¸ 0, the sampling interval h > 0, and the upsampling-rateM ¸ 2.

Throughout this chapter, we adopt the following conventions. A single-

input single-output transfer function G is written in regular font, a multi-input

and/or multi-output G is written in bold, and a hybrid system G is written in

calligraphic font. We write scalars in regular font asx, and vectors in bold asx .

In our ¯gures, solid lines illustrate analog signals, and dashed lines are intended

for digital ones.

The remainder of this chapter is organized as follows. In Section 5.2, we

show that the design problem is equivalent to a model-matching problem. De-

sign procedures for IIR and FIR synthesis ¯lters are presented in Section 5.3

and 5.4, respectively. Robustness of the designed system against delay esti-

mates is presented in Section 5.5. We show experimental results in Section 5.6.

Finally, we give conclusion and discussion in Section 5.7.

5.2 Equivalence of K to a Model-Matching
Problem

In this section, we show that there exists a ¯nite-dimensional digital linear time-

invariant system K having the sameH 1 norm with K. We demonstrate this in

three steps. In Section 5.2.1, we convertK into an in¯nite-dimensional digital

system. Next, in Section 5.2.2, we convert the system further into a ¯nite-

dimensional systemKd. Finally, in Section 5.2.3, we convert Kd into a linear

time-invariant system.

5.2.1 Equivalence of K to a digital system

The idea is to show that the hybrid subsystemG (see Fig. 5.3) ofK is H 1 norm

equivalent to a digital system. In Fig. 5.3, we denotef di gN
i =1 the fractional

parts of f D i gN
i =1 . In other words, we have 0· di < h and mi 2 Z such that

D i = mi h + di (1 · i · N ): (5.3)

Note that by working with system G, we need to compensate for the di®erence

betweene¡ D i s and e¡ di s. These di®erences are analog delay operatorse¡ m i hs
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©N (s) Sh

Sh

Sh

. . .. . . . . .

e¡ d1 s
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v0(t)

v1(t)

vN (t)

y0[n]

y1[n]

yN [n]

Figure 5.3: The hybrid (analog input digital output) subsystem G of K. Note
that the sampling interval of all channels is h.

that can be interchanged with the sampling operators Sh to produce digital

integer delay operatorsz¡ m i .

To ¯nd a H 1 norm equivalent digital system for G, we adopt a divide-and-

conquer approach: each channel ofGwill be shown to beH 1 norm equivalent to

a digital system. Since ©0(s) is strictly proper, there exist state-space matrices

f A0; B0; C0; 0g and state function x 0(t) such that

(
_x 0(t) = A0x 0(t) + B0f (t)

v0(t) = C0x 0(t):

For 0 · t1 < t 2 < 1 , we can compute the future state valuex 0(t2) from a

previous state valuex 0(t1) as follows:

x 0(t2) = e( t 2 ¡ t 1 )A 0 x 0(t1) +
Z t 2

t 1

e( t 2 ¡ ¿)A 0 B0f (¿)d¿: (5.4)

De¯ne linear operator Q0 taking inputs u(t) 2 L 2[0; h) as

Q0u =
Z h

0
e(h¡ ¿)A 0 B0u(¿)d¿:

Applying (5.4) using t1 = nh and t2 = ( n + 1) h we get

x 0((n + 1) h) = ehA 0 x 0(nh) + Q0
ef [n]; (5.5)

where ef [n] denotes the portion of f (t) on the interval [ nh; nh + h) translated to

[0; h). In other words, we consider the analog signalf (t) as a sequencef ef [n]gn 2 Z

with ef [n] 2 L 2[0; h). The mapping from f (t) into f ef [n]gn 2 Z is called the lifting

operator [60, Section 10.1]. Clearly, the lifting operator preserves the energy of

the signals, that is,

kf (t)k2 = k ef k2 =

Ã
1X

n = ¡1

k ef [n]k2
2

! 1=2

;
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where k ef [n]k2
2 :=

R(n +1) h
nh jf (t)j2dt.

Let G0 be the hybrid subsystem ofG with input f (t) and output y0[n] (see

Fig. 5.3). An implication of (5.5) is that y0[n] = v0(nh) can be considered as

the output of a digital system with input ef [n] and state x d0[n] = x 0(nh) as

follows: (
x d0[n + 1] = ehA 0 x d0[n] + Q0

ef [n]

y0[n] = C0x d0[n]:

Since the lifting operator preserves the norm, systemG0 is H 1 norm equivalent

to the system G0 = f ehA 0 ; Q0; C0; 0g.

The same technique can be used for the remaining channels. LetGi , for

1 · i · N , be the hybrid subsystem of G with input f (t) and output yi [n]

(see Fig. 5.3). Suppose thatf A i ; B i ; Ci ; 0g is a state-space realization of ©i (s)

with state function x i (t). We de¯ne linear operators Qi and Ri taking inputs

u(t) 2 L 2[0; h) as

Qi u =
Z h

0
e(h¡ ¿)A i B i u(¿)d¿; (5.6)

and

Ri u = Ci

Z h¡ di

0
e(h¡ di ¡ ¿)A i B i u(¿)d¿: (5.7)

Similar to (5.5), we can obtain

x i ((n + 1) h) = ehA i x i (nh) + Qi
ef [n]: (5.8)

Applying (5.4) again with t1 = nh and t2 = ( n + 1) h ¡ di we get

x i ((n + 1) h ¡ di ) = e(h¡ di )A i x i (nh) +

+
Z (n +1) h¡ di

nh
e(( n +1) h¡ di ¡ ¿)A i B i f (¿)d¿:

Sincevi (t) = Ci x i (t ¡ di ) for all t, using t = ( n + 1) h we obtain

vi ((n + 1) h) = Ci e(h¡ di )A i x i (nh) + Ri
ef [n]: (5.9)

From (5.8) and (5.9) we see thatyi [n] = vi (nh) can be considered as the

output of a digital system with input ef [n] and state x di [n] =

"
x i (nh)

vi (nh)

#

as

follows:

8
>>>>>><

>>>>>>:

x di [n + 1] =

"
ehA i 0

Ci e(h¡ di )A i 0

#

| {z }
A di

x di [n] +

"
Qi

Ri

#

| {z }
Bi

ef [n]

yi [n] = [ 0; 1]
| {z }

Cdi

x di [n]:

(5.10)

Since the lifting operator preserves the norm, systemGi is H 1 norm equivalent
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to the system Gi = f Adi ; Bi ; Cdi ; 0g.

Finally, we note that the system Gis the vertical concatenation of subsystems

fGi gN
i =0 . Since each subsystemGi is H 1 norm equivalent to the systemGi with

the same input ef [n], for 0 · i · N , the system G is also H 1 norm equivalent

to the vertical concatenation system G of subsystemsf Gi gN
i =0 . We summarize

the result of this Section in Proposition 5.1.

Proposition 5.1 The systemGis H 1 norm equivalent to the in¯nite-dimensional

digital system

G ,

"
Ad B

Cd 0

#

; (5.11)

where Ad; B; Cd are determined as

8
><

>:

Ad = diag N +1

¡
ehA 0 ; Ad1; : : : ; AdN

¢

B = [ QT
0 BT

1 : : : BT
N ]T

Cd = diag N +1 (C0; [0; 1]; : : : ; [0; 1]):

(5.12)

In the above equations, and in the remainder of the chapter, we denote

diagk (®1; ®2; : : : ; ®k ) the matrix with ®i in the diagonal, for 1 · i · k, and 0

elsewhere, wheref ®i gk
i =1 can be scalars, vectors, or matrices.

5.2.2 Equivalence of K to a ¯nite-dimensional digital
system

Proposition 5.1 shows thatG is H 1 norm equivalent to an in¯nite-dimensional

digital system G. Next, we convert G further into some ¯nite-dimensional digital

system Gd.

Proposition 5.2 Let B¤ be the adjoint operator ofB and Bd be a square matrix

such that

BdB T
d = BB¤: (5.13)

The ¯nite-dimensional digital system Gd(z) , f Ad; Bd; Cd; 0g has the sameH 1

norm with G:

kGdk1 = kGk1 : (5.14)

Proof 5.1 The product BB¤ is a linear operator characterized by a square ma-

trix of ¯nite dimension (the computation of BB¤ is given in Appendix). Hence

Gd(z) , f Ad; Bd; Cd; 0g is a ¯nite-dimensional digital system. The proof of (5.14)

can be found in [60, Section 10.5].

Proposition 5.2 claims that, for all analog signalsf (t), there exists a digital

signal u [n] having the same energy asf (t) such that [y0; : : : ; yN ]T = Gdu . The
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Figure 5.4: The H 1 norm equivalent digital system Kd of K (see Proposi-
tion 5.3). Here f Hi (z)gN

i =0 are rational transfer functions de¯ned in (5.16).
Note that the input u [n] is of nu dimension.

dimensionnu of u [n] is equal to the number of rows ofAd (see Proposition 5.1),

i.e.,

nu = n0 + n1 + : : : + nN + N; (5.15)

whereni is the number of rows ofA i , for 0 · i · N . Since we want to minimize

the worst induced error over all inputs f (t) of ¯nite energy, we also need to

minimize kGdk1 for all inputs u [n] (having the same energy withf (t)).

At this point, we take into account the integer delay operators f z¡ m i gN
i =0 to

obtain a digital system Kd that has the sameH 1 norm as K.

Proposition 5.3 Let Cdi be the i -th row of the (N + 1) -row matrix Cd (see

Proposition 5.1), and Hi (z) be the multi-input single-output rational function

that outputs yi [n] from input u [n], for 0 · i · N . The system Hi (z) can be

computed as

Hi (z) , z¡ m i

"
Ad Bd

Cdi 0

#

(0 · i · N ): (5.16)

As a result, systemK is equivalent to the multiple-input one-output digital sys-

tem Kd(z) illustrated in Fig. 5.4.

5.2.3 Equivalence of K to a linear time-invariant system

The ¯nite-dimensional digital system Kd is not linear time-invariant (LTI) be-

cause of the presence of upsampling and downsampling operators (" M ); (#M ).

We apply polyphase techniques [61, 119] to makeKd an LTI system.

Let H0;j (z), for 0 · j · M ¡ 1, be the polyphase components of ¯lterH0(z).

In other words,

H0(z) =
M ¡ 1X

j =0

zj H0;j (zM ): (5.17)

We also denoteu p[n] and ep[n] the polyphase versions ofu [n] and e[n].

Note that ku pk2 = kuk2 and kepk2 = kek2. Hence, by working in the polyphase
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u p[n] W(z)

H(z) F(z)

¡

ep[n]

Figure 5.5: The equivalent LTI error system K(z) (see Theorem 5.1). Note that
the system K(z) is Mn u input M output, the transfer matrices W(z); H(z) are
of dimension M £ Mn u , and F(z) is of dimension M £ M .

domain, Kd(z) is converted into an LTI system with the same H 1 norm.

Proposition 5.4 The digital error system Kd(z) is H 1 norm equivalent to the

LTI system

K(z) = W(z) ¡ H(z)F(z) (5.18)

with input u p[n] and output ep[n]. In (5.18), H(z) and F(z) are standard

polyphase matrices off H i (z)gN
i =1 and f F i (z)gN

i =1 , and

(W(z)) i;j =

(
H0;j ¡ i (z) if 1 · i · j · M

zH0;M + j ¡ i (z) if 1 · j < i · M:
(5.19)

Proof 5.2 The proof uses standard polyphase techniques [61, 119], hence omit-

ted here.

Figure 5.5 shows the equivalent digital, LTI error systemK(z). The transfer

function matrix F(z) is to be designed. State-space realizations ofH(z) and

W(z) are given in Theorem 5.1 using state-space realizationsf AHi ; BHi ; CHi ; 0g

of f Hi (z)gN
i =0 (it can be easily veri¯ed that the D-matrix of Hi (z) is a zero-

matrix).

Theorem 5.1 The original induced error systemK has anH 1 norm equivalent

digital, LTI system K(z) = W(z) ¡ F(z)H(z) (see Fig. 5.5); that is,

kKk1 = kW(z) ¡ F(z)H(z)k1 ; (5.20)

where F(z) is the polyphase matrix off Fi (z)gN
i =1 to be designed. State-space

realizations of W(z) and H(z) can be computed as follows:

AW = AM
H 0

BW = [ AM ¡ 1
H 0

BH 0
; AM ¡ 2

H 0
BH 0

; : : : ; BH 0
]

CW = [( CH 0
)T ; (CH 0

AH 0
)T ; : : : ; (CH 0

AM ¡ 1
H 0

)T ]T

(DW ) ij =

(
CH 0

A i ¡ j ¡ 1
H 0

BH 0
if 1 · j < i · M;

0 else
:

(5.21)
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u p[n]
P(z)

F(z)

ep[n]

Figure 5.6: The induced error systemK(z) of the form of the standard problem
in H 1 control theory with input u p[n] output ep[n]. We want to design synthesis
system F(z) to minimize kKk1 .

and
AH = diag N (AM

H 1
; : : : ; AM

H 1
)

(BH ) ij = AM ¡ j
H i

BH i
; for 1 · i · N; 1 · j · M

CH = diag N (CH 1
; : : : ; CH N

)

DH = 0:

(5.22)

Proof 5.3 We give here the proof for (5.21). The proof for Eq. (5.22) can be

derived similarly. Consider the transfer function H00(z) in the block (1; 1) of

W(z) (see Proposition 5.4):

H00(z) =
1X

i =1

CH0 A iM ¡ 1
H0

BH0 z¡ i

=
1X

i =1

CH0

³
AM

H0

´ i ¡ 1³
AM ¡ 1

H0
BH0

´
z¡ i

,

"
AM

H0
AM ¡ 1

H0
BH0

CH0 0

#

:

The state-space representation of the block(1; 1) of W(z) is in agreement

with (5.21). The same technique can be applied for the remaining blocks.

5.3 Design of IIR Filters

5.3.1 Conversion to the standard H 1 control problem

The problem of designingF(z) to minimize kKk1 (see Fig. 5.5) has a similar form

to the model-matching form which is a special case of thestandard problemin

H 1 control theory [103, 104]. Figure 5.6 shows the systemK(z) in the standard

form. The system P(z) of Fig. 5.6 has a state-space realization derived from
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ones ofW(z) and H(z) as

"
AP BP

CP DP

#

=

2

6
6
6
6
4

AW 0

0 AH

BW 0

BH 0

CW 0

0 CH

DW ¡ I

DH 0

3

7
7
7
7
5

: (5.23)

Solutions to the standard problem have existing software, such as MAT-

LAB's Robust Control Toolbox [120], to facilitate the optimizatio n procedures.

5.3.2 Design procedure

² Inputs: Rational transfer functions f ©i (s)gN
i =0 (strictly proper), positive

fractional delays f D i gN
i =1 , the system tolerance delaym0 ¸ 0, the sampling

interval h > 0, the superresolution rateM ¸ 2.

² Outputs: Synthesis IIR ¯lters f Fi (z)gN
i =1 .

1. Let D i = mi h + di for 1 · i · N as in (5.3).

2. Compute a state-space realizationf A i ; B i ; Ci ; 0g of ©i (s) for 0 · i · N .

3. Compute the systemGd = f Ad; Bd; Cd; 0g as in Proposition 5.1 and 5.2.

4. Compute a state-space realization ofHi (z), for 0 · i · N , as in Proposi-

tion 5.3.

5. Compute the state-space realization ofW(z) and H(z) as in (5.21) and

in (5.22) of Theorem 5.1.

6. Compute the state-space realization ofP(z) from H(z) and W(z) as in (5.23).

7. Design a synthesis systemF(z) using existing H 1 optimization tools.

8. Obtain f Fi (z)gN
i =1 from F(z) by

[F1(z) F2(z) : : : FN (z)] = [1 z¡ 1 : : : z¡ M +1 ]F(zM ):

5.4 Design of FIR Filters

5.4.1 Conversion to a linear matrix inequality problem

In this section, we present a design procedure to synthesize FIR ¯ltersf Fi (z)gN
i =1 .

For some practical applications, FIR ¯lters are preferred to IIR ¯lters for thei r

robustness to noise and computational advantages.

We ¯rst derive a state-space realizationf AF ; BF ; CF ; DF g of the polyphase

matrix F(z) of f Fi (z)gN
i =1 based on the coe±cients off Fi (z)gN

i =1 . Assuming
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that the synthesis FIR ¯lters f Fi (z)gN
i =1 are of maximum length nM > 0, for

1 · i · N , we denote

Fi (z) = di 0 + di 1z¡ 1 + di 2z¡ 2 + : : : + di;nM ¡ 1z¡ nM +1 ;

and

Cij = [ di;j + M di;j +2 M : : : di;j +( n ¡ 1)M ]:

The polyphase systemF(z) of f Fi (z)gN
i =1 has a state-space realizationf AF ; BF ; CF ; DF g

as 8
>>>><

>>>>:

AF = diag M (An ; : : : ; An )

BF = diag M (Bn ; : : : ; Bn )

(CF ) ij = Cji (0 · i · M ¡ 1 and 1· j · N )

(DF ) ij = dji (0 · i · M ¡ 1 and 1· j · N );

(5.24)

where matrix An 2 Rn £ n and vector Bn 2 Rn are

An =

2

6
6
6
6
6
4

0 ¢ ¢ ¢ ¢ ¢ ¢0

1
. . .

...
...

. . .
. . .

...

0 ¢ ¢ ¢ 1 0

3

7
7
7
7
7
5

; Bn =

2

6
6
6
6
4

1

0
...

0

3

7
7
7
7
5

:

Note that, given the number n, the matrices AF ; BF do not depend on

f Fi (z)gN
i =1 . Hence, designingf Fi (z)gN

i =1 is equivalent to ¯nding the matri-

ces CF ; DF to minimize K(z). The system K(z) has a state-space realization

f AK ; BK ; CK ; DK g as follows:

K ,

2

6
6
6
6
4

AW 0 0 BW

0 AH 0 BH

0 BF CH AF BF DH

CW ¡ DF CH ¡ CF DW ¡ DF DH

3

7
7
7
7
5

: (5.25)

We observe that the state-space matrices ofK(z) depend on CF ; DF in a

linear fashion. Hence we can use the linear matrix inequalities (LMI) [113, 121]

techniques to solve for the matricesCF ; DF .

Proposition 5.5 [115, 121] For a given° > 0, the systemK(z) satis¯es kKk1 <

° if and only if there exists a positive de¯nite matrix P > 0 such that

2

6
4

AT
K P AK ¡ P AT

K P BK CT
K

B T
K P AK B T

K P BK ¡ °I D T
K

CK DK ¡ °I

3

7
5 < 0: (5.26)

For any ° > 0, Proposition 5.5 provides us with a tool to test if kKk1 < ° .

Hence, we can iteratively decrease° until we get close to the optimal perfor-
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mance (within a prede¯ned performance tolerance). Available implementations

such as MATLAB's LMI Control Toolbox [122] can facilitate the design proce-

dure.

5.4.2 Design procedure

² Inputs: Rational transfer functions f ©i (s)gN
i =0 (strictly proper), positive

fractional delays f D i gN
i =1 , the system tolerance delaym0 ¸ 0, the sampling

interval h > 0, the superresolution rateM ¸ 2.

² Outputs: Synthesis FIR ¯lters f Fi (z)gN
i =1 .

1. Let D i = mi h + di , for 1 · i · N , as in (5.3).

2. Compute a state-space realizationf A i ; B i ; Ci ; 0g of ©i (s) for 0 · i · N .

3. Compute the systemGd = f Ad; Bd; Cd; 0g as in Proposition 5.1 and 5.2.

4. Compute a state-space realization ofHi (z), for 0 · i · N , as in Proposi-

tion 5.3.

5. Compute the state-space realization ofW(z) and H(z) as in (5.21) and

in (5.22) of Theorem 5.1.

6. Design synthesis ¯lter f Fi (z)gN
i =1 using Proposition 5.5.

7. Obtain f Fi (z)gN
i =1 from F(z) by

[F1(z) F2(z) : : : FN (z)] = [1 z¡ 1 : : : z¡ M +1 ]F(zM ):

5.5 Robustness against Delay Uncertainties

The proposed design procedures for synthesis ¯lters assume perfect knowledge

of the delays f D i gN
i =1 . In this section, we show that the induced error system

K obtains nearly optimal performance if the synthesis ¯lters are designed using

estimates f bD i gN
i =1 su±ciently close to the actual delays f D i gN

i =1 .

We denote f ±i gN
i =1 the delay jitters

±i = D i ¡ bD i ; i = 1 ; 2; : : : ; N; (5.27)

and ± be the maximum jitter

± =
N

max
i =1

fj ±i jg: (5.28)

For convenience, we also de¯ne operators

¢ (s) = diag N (e¡ ±1 s; : : : ; e¡ ±N s); (5.29)

©(s) = diag N (©1(s); : : : ; ©N (s)) : (5.30)
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¡

e[n]

Figure 5.7: The hybrid system K and the uncertainty operator ¢ caused by
delay estimate errors.

The induced error systemK, see Fig. 5.2, can be rewritten as in Fig. 5.7,

whereW represents the high-resolution channel ofK, and F signi¯es the hybrid

MIMO system composed of the delay operatorsf e¡ bD i sgN
i =1 , the sampling op-

erators SMh , the synthesis ¯lters f Fi (z)gN
i =1 , and the summation of all the low

resolution channels. The uncertainty operator¢ only a®ects the low-resolution

channels:

K = W ¡ F ©¢ : (5.31)

It is easy to see that all these operators have boundedH 1 norm. Let ! 2 R+

be an arbitrary, but ¯xed, positive number. The following Lemma gives a bound

for the singular values ofI ¡ ¢ (j! ) and ©(j! ) for each frequency! .

Lemma 5.1 The maximum singular value of I ¡ ¢ (j! ) and ©(j! ) can be

bounded as

¾max [I ¡ ¢ (j! )] ·
q

2±j! j; (5.32)
(

¾max [©(j! )] · C©=
p

j! j if j! j > !

¾max [©(j! )] · C© if j! j · !;
(5.33)

where C© is a constant depending on! and f ©i gN
i =1 .

Proof 5.4 To show (5.32), observe that the operator

¡
I ¡ ¢ (j! )

¢
¢
¡
I ¡ ¢ ¤(j! )

¢
(5.34)

is a matrix with 2 ¡ 2 cos(±i ! ), for i = 1 ; 2; : : : ; N , in the diagonal and zeros

elsewhere. Using

1 ¡ cos(x) · j xj; x 2 R; (5.35)

that can be easily veri¯ed, we indeed prove(5.32).

To show (5.33), it is su±cient to note that ©(j! ) is a diagonal operator with

strictly proper rational functions in the diagonal. Its maximum singular values

hence decay at least as fast asO(j! j¡ 1) when j! j > ! , and are bounded when

j! j · ! , which in fact implies (5.33).

We use the result of Lemma 5.1 to derive the bound for the composite

operator © ¡ ©¢ based on±.
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Proposition 5.6 The following inequality holds:

k© ¡ ©¢ k1 · C
p

±; (5.36)

for some C > 0.

Proof 5.5 We denoteu(t) the output of © for the input f (t), denote g(t) the

output of (I ¡ ¢ ) for the input u (t). Hence:

kG(j! )k2 = k
¡
I ¡ ¢ (j! )

¢
©(j! )F (j! )k2

· ¾max [I ¡ ¢ (j! )] ¢¾max [©(j! )] ¢ kF (j! )k2:

Using the result of Lemma 5.1 for! > ! we derive

Z

j ! j> !
kG(j! )k2

2d! ·
Z

j ! j> !
2±j! j ¢

C2
©

j! j
¢ kF (j! )k2

2d!

· 2±C2
© ¢ kf k2

2: (5.37)

Similarly, for ! · ! , we can obtain

Z

j ! j· !
kG(j! )k2

2d! ·
Z

j ! j· !
2±j! j ¢C2

© ¢ kF (j! )k2
2d!

· 2±C2
© ! ¢ kf k2

2: (5.38)

From (5.37) and (5.38) we can easily obtain

kgk2 · C ¢ kf k2; (5.39)

for

C = C©

p
2(! + 1) : (5.40)

Equation (5.39) indeed implies (5.36).

The following theorem shows the robustness of the induced error systemK

against the delay jitters f ±i gN
i =1 .

Theorem 5.2 In the presence of delay estimate errors, the induced error sys-

tem K is robust in the sense that itsH 1 norm is bounded as

kKk1 · kW ¡ F ©k1 +
p

±¢C ¢ kFk1 ; (5.41)

where ± is the maximum jitters and C© is de¯ned as in (5.33).

Proof 5.6 Indeed:

kKk1 = kW ¡ F ©¢ k1

· kW ¡ F ©k1 + kF © ¡ F ©¢ k1

· kW ¡ F ©k1 +
p

±¢C ¢ kFk1 :

85



Hence, the induced error systemK is robust against the delay estimate

errors f ±i gN
i =1 . In fact, its performance is degraded from the design performance

kW ¡ F ©k1 , in the worst case, by an amount of orderO(
p

±).

5.6 Experimental Results

We present in Section 5.6.1 and 5.6.2 examples of IIR and FIR ¯lter design.

In Section 5.6.3, we compare the performance of proposed method to existing

methods.

5.6.1 Example of IIR ¯lter design

We design IIR synthesis ¯lters for the following setting:

² We use two channels to double the resolution, that is,M = N = 2.

² All transfer functions © i (s) = ©( s), for 0 · i · 2, where ©(s) is the

Chebyshev type-2 ¯lter of order 6 with stopband attenuation 20 dB and

with stopband edge frequency of 300 Hz (for the data sampled at 1000

Hz). The MATLAB command to design ©( s) is cheby2(6,30,300/500) .

(We normalize ©(s) so that it has unit gain.) The Bode diagram of the

transfer function ©(s) is plotted in Fig. 5.8.

² The input f (t) is a step function having energy at all frequencies:

f (t) =

(
0; if t < ¿

1; if t ¸ ¿:

² m = 10; h = 1 ; D1 = 1 :2; D2 = 0 :6.

In Fig. 5.9, we show the magnitude and phase response of synthesized ¯lters

F1(z) (dashed) andF2(z) (solid). The orders of F1(z); F2(z) are 28 in this case.

It is interesting to note that the synthesized ¯lters are nearly linear phase.

In Fig. 5.10, we plot the error e[n] (solid) against the desired output y0[n]

(dashed). We can see that the approximation error is very small compared to

the desired signal. TheH 1 norm of the system iskKk1 ¼ 4:68%. Note that

the system is designed without any assumption on the input signals.

5.6.2 Example of FIR ¯lter design

The experimental setting is as follows:

² We use two channels to double the resolution; that is,M = N = 2.
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Figure 5.8: Example of IIR ¯lter design. The magnitude and phase response of
the transfer function ©(s) modeling the measurement device. We use ©i (s) =
©(s) for i = 0 ; 1; 2.
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Figure 5.9: Example of IIR ¯lter design. The magnitude and phase response
of synthesized IIR ¯lters F1(z) (dashed), and F2(z) (solid) designed using the
proposed method. The order ofF1(z) and of F2(z) are 28.
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Figure 5.10: Example of IIR ¯lter design. The error e[n] (solid) plotted against
the desired output y0[n] (dashed). The induced error is small compared to the
desired signal. TheH 1 norm of the system iskKk1 ¼ 4:68%.

² All functions © i (s) = ! 2
c =(s + ! c)2 for ! c = 0 :5 and i = 0 ; 1; 2. Fig. 5.11

plots the Bode diagram of the transfer function ©i (s).

² Input signal is a step function:

f (t) =

(
0 t < 0:3

1 t ¸ 0:3:
(5.42)

² m = 10; h = 1 ; D1 = 1 :2; D2 = 0 :6.

² Maximum ¯lter length is nM = 22.

Figure 5.12 shows the equivalent ¯ltersH0(z) of the ¯rst channel. Note that

Hi (z), for i = 0 ; 1; 2, take multiple inputs (in this case nu = 4 inputs, hence 4

¯lters for each Hi (z) are required). The magnitude and phase response of the

designed ¯lters F1(z); F2(z) are shown in Fig. 5.13. In Fig. 5.14, we show the

error e[n] of the induced system (solid) and the desired outputy0[n] (dashed).

The H 1 norm of the system iskKk1 ¼ 4%. Observe that the induced error

e[n] is small compared to the desired signaly0[n].

We also test the robustness ofK against jitters f ±i gi =1 ;2. The synthesis

¯lters are designed for bD1 = 1 :2h and bD2 = 0 :6h, but the system uses inputs

produced with jittered time delays D1; D2. Figure 5.15 shows theH 1 norm

of the induced errors plotted against jitters in ±1 (solid) and ±2 (dashed). The

errors are observed to be robust against delay estimate errors.
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Figure 5.11: The magnitude and phase response of the transfer function ©(s)
modeling the measurement devices. We use ©i (s) = ©( s) for i = 0 ; 1; 2.
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Figure 5.13: The magnitude and phase response of synthesis FIR ¯ltersF1(z)
(dashed), andF2(z) (solid) designed using the proposed method.
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Figure 5.15: The normkKk1 of the induced error system plotted against jitters
±1 (solid) and ±2 (dashed).

5.6.3 Comparison to existing methods

We compare the proposed method to an existing method, called the Sinc method.

The Sinc method approximates the fractional delay operatore¡ Ds by an FIR

¯lter using the function sinc( x) = sin( ¼x)=(¼x):

F (sinc )
D [n] = sinc

³
n ¡

D
2h

´
;

with jnj · Ncutof f = 11. Hence ¯lters of the Sinc method are of 23 taps. Note

that, in the formula above, the sampling interval is 2h.

The Sinc method ¯lters the low resolution signal x1[n] by the approximated

FIR ¯lter F (sinc )
D 1

to get the even samples ofy0[n], and ¯lters the second low

resolution signal x2[n] by the approximated FIR ¯lter F (sinc )
D 2 + h to get the odd

samples of y0[n]. In other words, the high resolution signal is obtained by

interleaving individually ¯ltered low resolution channels.

Figure 5.16 compares the error of the proposed method to the error of the

Sinc method. Both sets of synthesis ¯lters have similar length (length 23 for the

Sinc method and length 22 for the proposed method). We observe that the pro-

posed method shows a better performance, especially around the discontinuity.

The improved performance of the proposed technique in Fig. 5.16 is due to

two reasons. First, replacing fractional delaysf e¡ D i sgN
i =1 by equivalent analysis

¯lters f Hi (z)gN
i =1 enhances the results. Second, the use ofH 1 optimization al-

lows the system to perform even for inputs that are not necessarily bandlimited.

We also compare the proposed method to a second method, called the Sep-

aration method. This method, similar to the Sinc method above, obtains the

high resolution signal by interleaving individually processed low resolutionchan-

nels. What distinguishes the Separation method from the Sinc method is that

the Separation method approximates the fractional delay operatore¡ Ds by an
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Figure 5.16: Performance comparison of the error of the proposed method (solid)
and of the Sinc method truncated to 23 taps (dotted).

Table 5.1: Performance comparison using di®erent inputs. Columns RMSE1
and Max1: step function input as in (5.42). Columns RMSE2 and Max2: input
f (t) = sin(0 :3t) + sin(0 :8t).

RMSE1 Max1 RMSE2 Max2

Sinc method 0:0171 0:0765 0:0677 0:1782
Separation method 0:0029 0:0293 0:0084 0:0180
Proposed method 0:0008 0:0023 0:0018 0:0048

IIR operator designed to minimize the H 1 norm of an induced error system

corresponding to that channel [114].

Figure 5.17 compares the error of the proposed method and the Separa-

tion method. Again, the proposed method hence yields a better performance.

This is expected as the synthesis ¯lters are designed together, allowing e®ective

exploitation of all low resolution signals.

Table 5.1 shows the comparison of the three methods in terms of the root

mean square error (RMSE) and the maximum value (Max). We use two inputs of

di®erent characteristics: a step function as in (5.42), and a bandlimited function

f (t) = sin(0 :3t) + sin(0 :8t). Observe that the proposed method outperforms

existing methods in both norms and both inputs.

5.7 Conclusion and Discussion

In this chapter, we designed digital synthesis ¯lters for a hybrid multirate ¯l ter

banks with fractional delays, with potential applications in multichannel sam-

pling. We showed that this hybrid system is H 1 -norm equivalent to a digital

system. The equivalent digital system then can be used to design stable syn-

thesis ¯lters, using model-matching or linear matrix inequality methods. We
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Figure 5.17: Error comparison between the proposed method (solid) and the
Separation method (dotted).

also showed the robustness of the induced error system in the presence of delay

estimate errors. Experimental results con¯rmed the superior performance of the

proposed method compared to existing methods.

A limitation of the proposed method is the lack of an explicit solution for

the synthesis ¯lter f Fi (z)gN
i =1 . However, the design is performed only once for

all input signals. Moreover, this drawback can be compensated with the wide

availability of design implementations.

It is interesting to note that in our setup, pre¯ltering is not necessary because

the strictly proper system ©0(s) presents in the high-resolution channel. In

previous work on hybrid ¯lter design [105, 114, 115], a low-pass ¯lter is usually

used to select frequencies of interest of the input signal. Without this pre¯ltering

process, theH 1 norm of the induced error system can become in¯nite [105, 123].

For future work, we would like to investigate the relationship between the

upsampling rate M and the number of low resolution channelsN to guarantee

a prede¯ned performance. Another direction is to design synthesis ¯lters taking

into account the uncertainties in the ¯rst place, using traditional robust control

techniques [124].
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CHAPTER 6

CONCLUSION AND FUTURE
WORK

Systems using multiple sensors have inspired many important research topics

recently for their ability to utilize existing infrastructure and to exploit spa -

tiotemporal information of signals. In this thesis, we propose novel theory and

algorithms for two multisensor applications: image-based rendering and multi-

channel sampling. In this chapter, we recap the main contributions of the thesis

and discuss directions for future research.

6.1 Conclusion

This thesis contributes theory, analysis, and algorithms to the applications of

image-based rendering and of multichannel sampling.

For image-based rendering (IBR), many existing IBR algorithms use heuris-

tic interpolation of the virtual images as weighted sum of surrounding samples.

In Chapter 2, we propose a rigorous approach for IBR algorithms. Speci¯cally,

we propose

² A conceptual framework that generalizes many existing IBR algorithms,

using calibrated or uncalibrated images, and focuses on rigorous interpo-

lation techniques.

² A technique for IBR to determine what samples are visible at the virtual

cameras. The technique, applicable for both calibrated and uncalibrated

cases, is adaptive and allows simple implementation.

² A technique to interpolate the virtual images using both the intensity and

depth of actual samples.

Little research has addressed the sampling problem for IBR, in particular

for the analysis of IBR algorithms. As a consequence, many IBR systems have

to rely on oversampling to encounter aliasing at the virtual cameras. The most

important contribution of the thesis is the analysis of IBR texture mapping

algorithms using depth maps, presented in Chapters 3 and 4. The contributions

in these chapters include novel techniques to analyze the rendering quality of
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IBR algorithms, and bounds for the mean absolute errors derived using these

novel techniques. Speci¯cally, we propose

² A methodology to analyze the rendering quality of IBR texture mapping

algorithms using explicit depth maps.

In order to apply the above methodology, we also propose two novel tech-

niques:

² An approximation of available samples (derived from the actual pixels

to the virtual image plane or the scene surface) as a generalized Poisson

process.

² Bounds for sample jitters (caused by wrong depth estimates) based on the

relative position between the virtual camera and the scene.

Using the proposed methodology, we derive:

² Bounds for the mean absolute errors (MAE) of IBR texture mapping algo-

rithms using depth maps. In particular, the bounds successfully capture

the decay (O(¸ ¡ 2) for 2D scenes andO(¸ ¡ 1) for 3D scenes) of the MAE

with respect to the local density of actual sampleş .

Finally, in Chapter 5, we design synthesis ¯lters for a hybrid system to

approximate the output of a fast A/D converter using outputs of multiple slow

A/D converters. Speci¯cally, we

² Show the equivalence of a hybrid system to a discrete-time linear time-

invariant system.

² Use the equivalent system to design the synthesis ¯lters using standard

H 1 optimization tools such as model-matching and linear matrix inequal-

ities (LMI).

² Show that the system using the designed synthesis ¯lters are stable against

the uncertainties of the delay estimates.

6.2 Future Work

As for future work, we intend to investigate the following problems.

Framing IBR data. In Chapters 3 and 4, we analyze the rendering quality

of IBR algorithms, assuming the ideal pinhole camera model. We brie°y

discussed that, in practice, the intensity at a pixel is the convolution of the

image light ¯eld with a point spread function. Hence, the actual pixels can

be considered as samples of the surface texture using scaled and shifted

versions of the point spread function as sampling functions. Because these
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sampling functions are linearly dependent, they form not a basis but rather

a frame. We intend to analyze the sampling and reconstruction of IBR

data using techniques of the frame theory [125, 126, 127, 128].

Algorithm and analysis of IBR with non-Lambertian surfaces. An ex-

tension of for the IBR problem considered in this thesis is for non-Lambertian

surfaces. Since images of non-Lambertian surfaces change according to

viewpoints, another dimension must be added to incorporate the angle

between the viewpoint and the surface normal. If the surface normals are

available, rendering the virtual images can still be considered as a problem

of nonuniform interpolation, though in a higher dimensional space. More-

over, since the change in the angular dimension of the surface light ¯eld is

usually slower than its change in the spatial dimension [129], the quality

of the virtual image may be suboptimal if we interpolate using Delaunay

triangulation or tessellation. We intend to propose novel algorithms and

analysis for IBR with non-Lambertian surfaces.

IBR distributed coding. Results derived in Chapters 3 and 4 suggest that

the rendering quality depends strongly on the local density of the actual

samples. Since the sample density of the overall IBR system is the sum-

mation of the sample density at the actual cameras, we expect that the

local \innovative information" provided by the actual cameras is linearly

additive. An implication is that an independent coding scheme of depth

image-based rendering data at the actual cameras can achieve comparable

performance to joint coding schemes. We intend to investigate this issue

using information theoretical frameworks [130, 131, 132, 133, 134].

2D multichannel sampling. We intend to extend the result into 2D, focusing

on the design of 2D FIR synthesis ¯lters for practical purposes. The

designed systems have potential applications in image superresolution. In

Chapter 5, we design synthesis ¯lters to approximate fast A/D converters

using slow A/D converters in the presence of fractional delays. The main

building blocks of the design procedure for the 1D case are a hybrid-

to-digital system conversion technique, multirate system theory, and the

bounded-real lemma to convert the H 1 optimization problem into an

LMI problem. All these building blocks have corresponding literature in

2D [135, 136, 137, 138, 139, 140].
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APPENDIX A

SUPPORTING MATERIAL

A.1 Geometrical Interpretation of H ¦ (u)

The derivative H 0
¦ (u) of the scene-to-image mapping, de¯ned in (3.2), is neces-

sary to estimateYk and Uk , important factors in the error bounds of Theorem 3.1

and 3.2. In this appendix, we present a geometrical interpretation ofH 0
¦ (u).

Let ¦ = [ R; T ] and Q(u) = S(u) + S0(u) (see Fig. A.1).

Lemma A.1 The derivative H 0
¦ (u) of the scene-to-image mapping can be com-

puted as

H 0
¦ (u) =

det(A)
d(u)2 ; (A.1)

where

A = ¦ ¢
h

eQ(u); eS(u)
i

: (A.2)

Let e3 = [0 ; 0; 1]T and SQSC be the area of the triangleQSC . Taking the

determinant of the equality

2

6
4

¼T
1

¼T
2

eT
3

3

7
5 ¢

h
eQ; eS; eC

i
=

2

6
4

¼T
1

eQ ¼T
1

eS 0

¼T
2

eQ ¼T
2

eS 0

1 1 1

3

7
5 ;

we obtain

2SQSC = det( A): (A.3)

From (A.2) and (A.3) we obtain the following proposition:

Proposition A.1 The derivative H 0
¦ (u) of the scene-to-image mapping can be

computed as

H 0
¦ (u) =

2SQSC
d(u)2 : (A.4)
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Figure A.1: The derivative H 0
¦ (u) is proportional to the area SQSC of the triangle

4 QSC, and inversely proportional to the square of the depth.

Using (A.4), the derivative H 0
v (u) corresponding to the virtual camera can

be computed as

H 0
v (u) =

kC v ¡ S(u)k2

d(u)2 ¢ kS0(u)k2 ¢cos(µ);

where µ is the angle between vector
¡¡!
SC v and the normal vector

¡!
N of the

scene at S (see Fig. A.1). We note the connection ofH 0
v (u) to Bv de¯ned

in (3.19). Moreover, H 0
¦ (u) becomes larger if the angleµ is reduced. In other

words, H 0
¦ (u) is larger if the camera is placed toward the scene surface. Finally,

we note that the value of H 0
¦ (u) is related to the notion of foreshortening in

computer vision [67].

A.2 Proof of Proposition 4.1

Denote the following functions as linear interpolations of corresponding samples:

bf 12(x) =
x ¡ x1

x2 ¡ x1
f (x2) +

x2 ¡ x
x2 ¡ x1

f (x1)

bf 1d(x) =
x ¡ x1

xd ¡ x1
f (x ¡

d ) +
xd ¡ x
xd ¡ x1

f (x1)

bf d2(x) =
x ¡ xd

x2 ¡ xd
f (x2) +

x2 ¡ x
x2 ¡ xd

f (x+
d ):

Let e12(x); e1d(x), and ed2(x) be the corresponding interpolation errors. The

aggregated interpolation error is de¯ned as

E12 =
Z x 2

x 1

je12(x)jdx (A.5)

for bf 12(x) over the interval [x1; x2]. The aggregated errorsE1d and Ed2 are
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de¯ned similarly.

Lemma A.2 The equality

bf 12(xd) =
¢ 1

¢
f (x+

d ) +
¢ 2

¢
f (x ¡

d ) +
¢ 1¢ 2

¢
J1 + B (A.6)

holds for someB such that

jB j ·
1
2

¢ 1¢ 2 ¢ kf 00k1 : (A.7)

Proof A.1 Using the Taylor expansion we write

f (x1) = f (x ¡
d ) ¡ ¢ 1f 0(x ¡

d ) +
1
2

¢ 2
1f 00(»1) (A.8)

for some»1 2 [x1; xd]. A similar equation can be also derived forx2. Hence (A.6)

holds for

B =
¢ 2

1¢ 2

2¢
f 00(»1) +

¢ 1¢ 2
2

2¢
f 00(»2): (A.9)

For B de¯ned above, it is easy verify(A.6) .

Next, we propose a bound, for the case¹ i = " i = 0 for i = 1 ; 2, that is in

fact tighter than the one proposed in Proposition 4.1.

Lemma A.3 The aggregated errorE12, when there are no sample errors and

jitters, can be bounded by

E12 ·
1
12

¢ 3 ¢ kf 00k1 +
¢ 2

1 + ¢ 2
2

2¢
¢ jJ0j +

1
2

¢ 1¢ 2 ¢ jJ1j: (A.10)

Proof A.2 We can boundE12 by the summation ofE1d; Ed2, and the area of the

quadrangle formed by[x1; f (x1)]T , [x2; f (x2)]T , [xd; f (x+
d )]T , and [xd; f (x ¡

d )]T

(the shaded region in Fig. A.2). Hence

E12 · E1d + Ed2 +
¢ 1

2
j bf 12(xd) ¡ f (x ¡

d )j +
¢ 2

2
j bf 12(xd) ¡ f (x+

d )j: (A.11)

Next, inequalities similar to [77, Equation (11)] can be derived for E1d; Ed2.

Integrating both sides of these inequalities we obtain

E1d ·
1
12

¢ 3
1 ¢ kf 00k1 ; Ed2 ·

1
12

¢ 3
2 ¢ kf 00k1 : (A.12)

Substituting bf 12(xd) as in (A.6) into (A.11), together with inequalities (A.12),

we will indeed prove(A.10).

Finally, to extend Lemma A.3 in the presence of sample errors and jitters,

it is su±cient to prove the following lemma.
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Figure A.2: Linear interpolation error.

Lemma A.4 The following inequality holds for i = 1 ; 2:

jf (x i + ¹ i ) + " i ¡ f (x i )j · j " i j + j¹ i j ¢ kf 0k1 + jJ0j: (A.13)

Proof A.3 For arbitrary x; y 2 [x1; x2], with x · xd · y:

jf (y) ¡ f (x)j · j f (y) ¡ f (x+
d )j + jJ0j + jf (x ¡

d ) ¡ f (x)j

· j y ¡ xd j ¢ jf 0(µ1)j + jxd ¡ xj ¢ jf 0(µ2)j + jJ0j

· j y ¡ xj ¢ kf 0k1 + jJ0j:

The last inequality easily implies (A.13).

A.3 Geometrical Interpretation of H ¦ (u; v)

We present a property of the scene-to-image mappingH ¦ (u; v) in this appendix{

a generalization of the 2D case shown in [77]. In the following, we useS instead

of S(u; v). We denote

Su (u; v) = S(u; v) +
@S(u; v)

@u
;

Sv (u; v) = S(u; v) +
@S(u; v)

@v
:

Lemma A.5 The Jacobian @H ¦ (u; v)=@(u; v) of the scene-to-image mapping

has the determinant

det
µ

@H ¦ (u; v)
@(u; v)

¶
=

det(A)
d(u; v)3 ; (A.14)

where

A = ¦ ¢
h

eSu ; eSv ; eS
i

: (A.15)
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Let e4 = [0 ; 0; 0; 1]T 2 R4. Taking the determinant of the following equality

"
¦

eT
4

#

¢
h

eSu ; eSv ; eS; eC
i

=

"
A 0

1 1

#

;

we obtain:

det(A) = 6 VSu S v SC ; (A.16)

where VSu S v SC is the volume of the tetrahedron Su Sv SC . We summarize

the result in Proposition A.2.

Proposition A.2 The Jacobian@H ¦ (u; v)=@(u; v) of the scene-to-image map-

ping the has determinant

det
µ

@H ¦ (u; v)
@(u; v)

¶
=

6VSu S v SC
d(u; v)3 : (A.17)

A.4 Review of State-Space Methods

This appendix reviews basic notions of state-space methods. For more details,

readers are referred to [141]. We consider a ¯nite-dimensional, linear time-

invariant, causal systemGwhose transfer functionG(s) is proper. Let u (t) 2 Rm

be the input, y (t) 2 Rp be the output, and x (t) 2 Rn be a set of states ofG.

Then G has a state-space representation of form

(
_x (t) = Ax (t) + B u(t)

y (t) = Cx (t) + Du(t);
(A.18)

where A 2 Rn £ n ; B 2 Rn £ m ; C 2 Rp£ n ; D 2 Rp£ m are constant matrices, and

_x (t) denotes the time derivative of x (t).

Let U(s); X(s), and Y(s) be the Laplace transforms ofu (t); x (t), and y (t),

respectively. Then (A.18) implies

(
sX(s) = AX(s) + B U(s)

Y(s) = CX(s) + DU(s):

Thus, the transfer function from u(t) to y (t) is the p£ m rational matrix G(s):

G(s) = D + C(sI ¡ A)¡ 1B: (A.19)

Inversely, any proper rational transfer function G(s) has a state-space real-

ization satisfying (A.19). If G(s) is strictly proper, the D-matrix of G(s) is a
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zero matrix. We also use package notation

"
A B

C D

#

.

The state-space method in digital is similar to analog. A ¯nite-dimensional,

linear-time-invariant system, causal system with input u [n] 2 Rm , output y [n] 2

Rp, has a state-space model of the form

(
x [n + 1] = Ax [n] + B u[n]

y [n] = Cx [n] + Du[n];

where A 2 Rn £ n ; B 2 Rn £ m ; C 2 Rp£ n , and D 2 Rp£ m are constant matrices.

Note that in this case, x [n + 1] denotes the time advance ofx [n] instead of _x (t)

as in (A.18). The transfer function from u[n] to y [n] is

G(z) = D + C(zI ¡ A)¡ 1B

= D +
P 1

n =1 CAn ¡ 1Bz ¡ n :

A.5 Computation of the Norm of BB¤

This appendix presents how to compute the norm of the productBB¤. The

adjoint operators of f Qi gN
i =0 and f Ri gN

i =1 are

(Q¤
i x)( t) = B T

i e(h¡ t )A T
i x

(R¤
i x)( t) = 1[0;h ¡ di ) B

T
i e(h¡ di ¡ t )A T

i CT
i x:

Hence, the adjoint operator of Bi is B¤
i = [ Q¤

i ; R¤
i ] and the adjoint operator of

B is B¤ = [ Q¤
0; B¤

1; : : : ; B¤
N ]. Lemma A.6 provides a formula to compute the

product BB¤.

Lemma A.6 The operator BB¤ is a linear operator characterized by a symmet-

ric matrix ¢ = (¢ ij )N
i;j =0 with

¢ ij =

8
>>>>>>><

>>>>>>>:

Q0Q¤
0; if i = j = 0

Q0B¤
j =

h
Q0Q¤

j Q0R¤
j

i
; if 0 = i < j

Bi B
¤
j =

"
Qi Q

¤
j Qi R

¤
j

Ri Q
¤
j Ri R

¤
j

#

; if 0 < i · j

¢ T
ji ; if i > j:

Each block¢ ij is composed by components of formsQi Q
¤
j ; Qi R

¤
j and Ri R

¤
j

that can be computed as

Qi Q
¤
j = Mij (h) (A.20)

Qi R
¤
j = edj A j Mij (h ¡ dj )CT

j (A.21)

Ri R
¤
j =

(
Ci e(dj ¡ di )A i Mij (h ¡ dj )CT

j ; if di < d j

Ci Mij (h ¡ di )e(di ¡ dj )A T
i CT

j ; if di ¸ dj ;
(A.22)
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where

Mij (t) :=
Z t

0
e¿A i B i B

T
j e¿AT

j d¿:

Proof A.4 We show here the proof of(A.22). The proofs of (A.20) and (A.21)

are similar. Consider the casedi < d j . For any x of appropriate dimension we

have

³
Ri R

¤
j

´
x = Ci

Z h¡ di

0
e(h¡ di ¡ ¿)A i B i (R

¤
j x)(¿)d¿

=
³

Ci e(dj ¡ di )A i Mij (h ¡ dj )CT
j

´
x:

Hence if di < d j we indeed verify

Ri R
¤
j = Ci e(dj ¡ di )A i Mij (h ¡ dj )CT

j :

The proof is similar for the case wheredi ¸ dj .

Finally, note that Mij (t) can be e±ciently computed as [142]

Mij (t) = eA i t ¼12(t);

where ¼12(t) is the block (1; 2) of the matrix

"
¼11(t) ¼12(t)

0 ¼22(t)

#

= exp

Ã"
¡ A i B i B

T
j

0 AT
j

#

t

!

:
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