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The Sensing Problem

real−time, remote

Object

Reconstruction

Acquisition

x ∈ X A

R

b = Ax

x̂ = Rb

• Sensing = Sampling = Representing objects with sequence of real
numbers.

• Requirements: length(b) is small; A is fast and simple.

• Goal: use the prior information that x ∈ X to construct A and R.
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Classical Sampling

Shannon, 1948

• X = BL([−π
T ,

π
T ]).

• A: uniform sampling

x(t) 7→ bn = x(nT )

= (x ∗
1

T
sincT )(nT ) if x ∈ X

= 〈x,
1

T
sincT (· − nT )〉L2(R),

where sincT (t) = sin(πt/T )
πt/T .

• R: sinc-interpolation

x(t) =
∑

n∈Z

x(nT )sincT (t− nT ).
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General Sampling

Unser and Aldroubi, 1994; Unser, 2000

• X = span {φ(t− nT ), n ∈ Z}

• A: filtering and sampling

x(t) 7→ bn = (x ∗ ψ̃)(nT ) = 〈x, ψ(· − nT )〉L2(R)

• R:

{bn}n∈Z
7→ {cn}n∈Z

x(t) =
∑

n∈Z

cnφ(t− nT )

• Key: Sampling signals from a shift-invariant or spline-like space.
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More General Sampling: Frames

• X : a Hilbert space.

• A: sequence of linear functionals (including Fourier imaging,
tomography,...)

x 7→ bn = 〈x, ψn〉X , n ∈ Λ.

• If {ψn}n∈Λ in a frame of X ; i.e. there exist two constants (frame
bounds) α > 0 and β <∞ such that for all x ∈ X

α‖x‖2
X ≤

∑

n∈Λ

|〈x, ψn〉|
2 ≤ β‖x‖2

X ,

then we can reconstruct x in a numerically stable way from {〈x, ψn〉}n∈Λ.

The tightest frame ratio β/α provides a metric for this stability.

Example: for matrix multiplication x 7→ Ax, frame ratio β/α = (κ(A))2.

• R: using dual frame, frame algorithm, conjugate gradient, consistency,...
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New Sampling: Signals with Finite Rate of Innovations

Vetterli, Marziliano, and Blu, 2001; also with Maravic and Dragotti

• Basic model: stream of Diracs

0 T t

x(t) =

K∑

k=1

ckδ(t− tk),

where the weights {ck} and the locations {tk} are unknown.

• Key feature: There is a known finite rate of innovations, but we have
find out where are these innovations (e.g. locations of the Diracs).

⇒ Signals of interest do not fill a vector space.

• Key result: Exact reconstruction algorithms for certain signal models
and sampling kernels.
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Compressed Sensing

Bresler et al., 1999; Donoho, 2004; Candès, Romberg, Tao, 2004; Tropp,
2004; and many others

• X : objects x in R
m that are compressible by a fixed basis

x ≈ Φc, where c is sparse (i.e. few non-zero entries).

• A: take n (n≪ m) linear non-adaptive measurements; i.e. A ∈ R
n×m

b = Ax ≈ AΦ︸︷︷︸
M

c

• R: solve c from b = Mc with known M and knowing that c is sparse.

• Key result: All k-sparse c is recoverable from b = Mc for ‘most’ random
M ∈ R

n×m, where k log(m/k) ≪ n≪ m.

• Provably good reconstruction algorithms: Basic Pursuit and
Orthogonal Matching Pursuit.
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Proposed Sampling: Signals from a Union of Subspaces

Lu and Do, 2004

• X : a union of subspaces

X =
⋃

γ∈Γ

Sγ, where Sγ are subspaces of a Hilbert space H.

• A: sequence of linear functionals by {ψn}n∈Λ that return measurements

bn = 〈x, ψn〉H, n ∈ Λ.

E.g. ψn is the point spread function of the n-sensing device.

• Goals:

– Fundamentally extend traditional sampling theorems which are based
on the single vector space model.

– More efficient sampling/sensing schemes for an unknown object x by
exploring the prior information that x ∈ X , instead of just x ∈ H.
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Example 1: Stream of Diracs

0 T t

x(t) =
K∑

k=1

ckδ(t− tk),

• If we fix the locations of Diracs γ
def
= (t1, t2, . . . , tK) then

x ∈ Sγ
def
= span{δ(t− t1), . . . , δ(t− tK)}, dim(Sγ) = K.

• With all possible unknown locations, the unknown signal exactly lies on
a union of subspaces

x ∈ X
def
=

⋃

γ∈RK

Sγ, dim(Sγ) = K.
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Example 2: Overlapping Echoes

• Return signal contains up to K overlapping echoes:

x(t) =

K∑

k=1

ckφ(t− tk),

where φ(t) is a known pulse shape, but delays {tk}
K
k=1 and amplitudes

{ck}
K
k=1 are unknown.

• Applications: geophysics, radar, sonar, communications,...

• The inverse problem: find out the delays and amplitudes from a limited
number of samples of the return signal, have been extensively studied.

• Note: the sampling problem for overlapping echos using {ψn(t)}N
n=1

is equivalent for stream of Diracs using
{
ψ̊n(t)

}N

n=1
, where ψ̊n(τ) =

∫
ψn(t)φ(t− τ)dt.
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Example 3: Piecewise Polynomials or

Non-uniform Splines
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Similarly: Fix break-points / knots ⇒ one subspace
With unknown break-points / knots ⇒ union of subspaces.
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Example 4: Sparse Approximations

• Consider all K-term approximations using a fixed basis or dictionary
{φn}

∞
n=1 (e.g. a Fourier or wavelets basis) as

x̂K =
∑

n∈IK

cnφn,

where IK is a set of K selected basis functions or atoms.

• These represent all compressed signals by transform coding or denoised
signals by thresholding.

• They lie exactly on a union of subspaces.
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A Geometrical Viewpoint

Representation Space

S1

S2

S3
PS1

PS2

PS3

• X = S1 ∪ S2 ∪ S3.

• Sampling by {〈x, ψn〉}n is equivalent to projecting the signals to a lower
dimensional representation space.

• The union of subspace “structure” is preserved ⇐⇒ Signals are uniquely
determined by their projections.

• Dimension is reduced, without loss of information.
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Not All Samplings (Representation Spaces)

Are The Same

S1

S2
S3

PS1PS2

PS3

Unsuitable Representation Space

S1

S2

S3
PS1

PS2

PS3

Ill-Conditioned Representation Space
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Connection to Dimensionality Reduction

“Swiss roll” data set

After PCA After ISOMAP
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Key Questions

X =
⋃

γ∈Γ

Sγ, where Sγ are subspaces of a Hilbert space H,

A : x 7→ bn = 〈x, ψn〉H, n ∈ Λ.

• When each object x ∈ X is uniquely represented by its sampling data
{〈x, ψn〉}n∈Λ?

• What is the minimum sampling requirement for a signal class X ?

• What are the optimal sampling functions {ψn}n∈Λ?

• What are algorithms to reconstruct a signal x ∈ X from its sampling
data {〈x, ψn〉}n∈Λ?

• How stable is the reconstruction in the presence of noise and model
mismatch?
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Conditions on the Sampling Operator

X =
⋃

γ∈Γ

Sγ, A : x 7→ bn = 〈x, ψn〉H, n ∈ Λ,

Definitions:

• We call A an invertible sampling operator for X if each x ∈ X is uniquely
determined by its sampling data Ax; i.e.

Ax1 6= Ax2, whenever x1 6= x2, x1 ∈ X , x2 ∈ X .

• We call A a stably invertible sampling operator for X if there exist two
constants α > 0 and β <∞ such that for all x1 ∈ X , x2 ∈ X

α‖x1 − x2‖
2
H ≤ ‖Ax1 −Ax2‖

2
l2(Λ) ≤ β‖x1 − x2‖

2
H.

We call α and β stability bounds and the tightest ratio β/α provides a
metric for the stability of the sampling operator.
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Key Observation

• The difficulty in dealing with union of subspaces is that in the previous
definitions, x1 and x2 can be in two different subspaces.

• We introduce the following subspaces:

S̃γ,θ
def
= Sγ + Sθ = {y : y = x1 + x2,where x1 ∈ Sγ, x2 ∈ Sθ} ,

and
X̃ =

⋃

(γ,θ)∈Γ×Γ

S̃γ,θ.

• For example, in the case with streams of K Diracs, S̃γ,θ is a subspace of
up to 2K Diracs.

Proposition: A linear sampling operator A is stably invertible for X with
stability bounds α and β, if and only if for all y ∈ X̃

α‖y‖2
H ≤ ‖Ay‖2

l2(Λ) ≤ β‖y‖2
H,
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Minimum Sampling Requirement

Proposition: A linear sampling operator A is invertible for X if and only if

A is invertible for every S̃γ,θ, (γ, θ) ∈ Γ × Γ.

Proposition: Suppose that A : x 7→ {〈x, ψn〉}
N
n=1 is an invertible sampling

operator for X . Then

N ≥ Nmin
def
= sup

(γ,θ)∈Γ×Γ

dim(S̃γ,θ).

• Example: Streams of K Diracs

Nmin = 2K compare to # of free parameters = 2K

• Example: Piecewise polynomials on an interval with K pieces, each of
degree less than d

Nmin = (2K−1)d compare to # of free parameters = Kd+K−1.

• Note: The reconstruction algorithm in Vetterli et al., 2004 achieves the
minimum sampling in both cases.
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Existence of Minimal Sampling Operators

Proposition Let X =
⋃

γ∈Γ

Sγ be a countable union of subspaces of H.

Suppose that
Nmin = sup

(γ,θ)∈Γ×Γ

dim(S̃γ,θ)

is finite. Then the set of sampling vectors {ψn}
Nmin
n=1 such that the associated

sampling operator A is invertible for X is dense in HNmin.

As a result, consider X as the set of sparse approximations using up to K
basis vectors from a countable basis of H.

• An invertible linear sampling operator requires at least 2K sampling
vectors {ψn}n.

• An arbitrary set of 2K vectors {ψn}n will almost surely leads to an
invertible sampling operator.
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Case Study 1: Streams of Diracs

Consider X = {streams of K Diracs}. If y ∈ S̃γ,θ then

y(t) =
M∑

k=1

ckδ(t− tk), where . . . < tk < tk+1 < . . . , M ≤ 2K.

Let {ψn}
N
n=1 be the set of continuous sampling functions for A, then

(Ay)n = 〈y, ψn〉 =

M∑

k=1

ckψ(tk)

⇒ Ay = Gc, where G ∈ R
N×M , Gn,k = ψn(tk).

Thus, A is invertible for X if and only if G is invertible, or

det([ψn(tk)]
M
n,k=1) 6= 0, for all 1 ≤M ≤ N, t1 < t2 < . . . < tM .
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For N = Nmin = 2K, the set {ψn}
N
n=1 that satisfies the last condition is

called a complete Tchebycheff system.

Tchebycheff systems play an important role in several areas; notably, theory
of approximation, methods of interpolation, numerical analysis.

Numerous examples of Tchebycheff systems, including: power functions,
Gauss kernel, spline polynomials, sin and cos functions.

23



Case Study 2: Sparse Approximations

X =



x : x =

∑

k∈I, |I|=K

ckφk



 , where {φk}

∞
k=1 is an orthonormal basis.

A : x 7→ b = Ax, where bn = 〈x, ψn〉

x =
∑

k

ckφk 7→ b = Gc, with Gn,k = 〈φk, ψn〉.

Reconstruction problem: solve c from b = Gc subject to ‖c‖0 ≤ K.

Denote gk = [〈φk, ψ1〉, . . . , 〈φk, ψN〉]T the k-th column of G, and GI =
[gm]m∈I. Then from our propositions, the stability bounds are

α = inf
|I|=2K

λmin(G
T
I GI)

β = sup
|I|=2K

λmax(G
T
I GI)
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Lemma:

α ≥ inf
|I|=2K−1,k/∈I

(
〈gk, gk〉 −

∑

l∈I

|〈gk, gl〉|

)

β ≥ inf
|I|=2K−1,k/∈I

(
〈gk, gk〉 +

∑

l∈I

|〈gk, gl〉|

)

Proposition: Suppose ‖gk‖ = 1 and denote µ1(m) =
sup|I|=m,k/∈I

∑
l∈I|〈gk, gl〉|. Then A is a stably invertible sampling operator

if
µ1(2K − 1) < 1.

Note: Tropp (2004) shows if

µ1(K − 1) + µ1(K) < 1.

the OMP and BP exactly reconstruct the signal.
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Case Study 3: Union of Shift-Invariant Spaces

(Infinite-Dimensional Case)

Definition: S is called a (finitely generated) shift-invariant space, if

SΦ =

{
∑

n∈Z

D∑

k=1

cknφk(t/T − n)

}
,

where Φ = {φk}
K
k=1 are the generating functions.

Signals of interest:

X =
⋃

Φ

SΦ,

Example: signals with unknown spectral support.
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Sparse Tree Representations
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Original signal of length M = 256
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Reconstructed from K = 32 coefficients
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Wavelet coefficients

In many multiscale bases (e.g. wavelets), signals of interest (e.g. piecewise-
smooth) not only have few significant coefficients, but also those significant
coefficients are well-organized in trees.
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A Driving Application

MRI with limited number of measurements: MRI measures Fourier
coefficients of the unknown image sequentially.

A heart image Nonlinear approximation using 3% of
wavelet coefficients

Goal: Reconstruct a same quality image using about 10% of Fourier
coefficients.
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Signal Reconstruction using Sparse Tree Representations

• We propose to exploit the sparse tree representation as additional
prior information for signal reconstruction with limited numbers of
measurements.

• Intuitively, a general sparse representation with K coefficients can be
described with 2K numbers: K for the values and another K for the
locations.

• If these K significant coefficients are known to be organized in trees then
the indexing cost is significantly reduced and hence the total description
of the unknown signal.

• Exploiting this embedded tree structure in addition to the sparse
representation prior in inverse problems would potentially lead to:

1. better reconstructed signals;
2. reconstruction using fewer measurements; and
3. faster reconstruction algorithms.
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Proposed: TOMP – Tree-based Orthogonal Matching

Pursuit

La and Do, 2005

Extension of OMP for solving Ax = b that exploits:

P1 Vector x has sparse structure; i.e. only few entries in x are nonzero or

significant.

P2 Those significant entries of x are well organized in a tree structure.

31



Example

Piecewise-smooth signal of length 4096 and take 300 random measurements.
Reconstruction using TOMP (Tree-based Orthogonal Matching Pursuit).
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Using Other Methods

Reconstructions from the same set of measurements using OMP (Orthogonal
Matching Pursuit) and BP (Basis Pursuit).
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Comparison: OMP vs. TOMP
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There is a critical sampling region where TOMP improves reconstruction
by more than 7 dB, or achieves the same reconstruction quality but using
nearly half of number of measurements.
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Conclusion

• Sampling signals from a union of subspaces

– Fundamentally extend traditional sampling theorems which are based
on the single vector space model.

– Sharp results on sampling requirements.

• Signal reconstruction using sparse tree representations

– Significant gains by exploit the additional sparse tree prior.

• Great opportunity for developing new theory and algorithms that could
have impact on applications.
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