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The Sensing Problem

real−time, remote

Object

Reconstruction

Acquisition

x ∈ X A

R

b = Ax

x̂ = Rb

• Sensing = Sampling = Representing objects with sequence of real
numbers.

• Requirements: length(b) is small; A is fast and simple.

• Goal: use the prior information that x ∈ X to construct A and R.
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Classical Sampling

Shannon, 1948

• X = BL([−π
T ,

π
T ]).

• A: uniform sampling

x(t) 7→ bn = x(nT )

= (x ∗
1

T
sincT )(nT ) if x ∈ X

= 〈x,
1

T
sincT (· − nT )〉L2(R),

where sincT (t) = sin(πt/T )
πt/T .

• R: sinc-interpolation

x(t) =
∑

n∈Z

x(nT )sincT (t− nT ).
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General Sampling

Unser and Aldroubi, 1994; Unser, 2000

• X = span {φ(t− nT ), n ∈ Z}

• A: filtering and sampling

x(t) 7→ bn = (x ∗ ψ̃)(nT ) = 〈x, ψ(· − nT )〉L2(R)

• R:

{bn}n∈Z
7→ {cn}n∈Z

x(t) =
∑

n∈Z

cnφ(t− nT )

• Key: Sampling signals from a shift-invariant or spline-like space.
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More General Sampling: Frames

• X : a Hilbert space.

• A: sequence of linear functionals (including Fourier imaging,
tomography,...)

x 7→ bn = 〈x, ψn〉X , n ∈ Λ.

• If {ψn}n∈Λ in a frame of X ; i.e. there exist two constants (frame
bounds) α > 0 and β <∞ such that for all x ∈ X

α‖x‖2
X ≤

∑

n∈Λ

|〈x, ψn〉|
2 ≤ β‖x‖2

X ,

then we can reconstruct x in a numerically stable way from {〈x, ψn〉}n∈Λ.

The tightest frame ratio β/α provides a metric for this stability.

Example: for matrix multiplication x 7→ Ax, frame ratio β/α = (κ(A))2.

• R: using dual frame, frame algorithm, conjugate gradient, consistency,...
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New Sampling: Signals with Finite Rate of Innovations

Vetterli, Marziliano, and Blu, 2001; also with Maravic and Dragotti

• Basic model: stream of Diracs

0 T t

x(t) =

K∑

k=1

ckδ(t− tk),

where the weights {ck} and the locations {tk} are unknown.

• Key feature: There is a known finite rate of innovations, but we have
find out where are these innovations (e.g. locations of the Diracs).

⇒ Signals of interest do not fill a vector space.

• Key result: Exact reconstruction algorithms for certain signal models
and sampling kernels.
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Compressed Sensing

Bresler et al., 1999; Donoho, 2004; Candès, Romberg, Tao, 2004; Tropp,
2004; and many others

• X : objects x in R
m that are compressible by a fixed basis

x ≈ Φc, where c is sparse (i.e. few non-zero entries).

• A: take n (n≪ m) linear non-adaptive measurements; i.e. A ∈ R
n×m

b = Ax ≈ AΦ︸︷︷︸
M

c

• R: solve c from b = Mc with known M and knowing that c is sparse.

• Key result: All k-sparse c is recoverable from b = Mc for ‘most’ random
M ∈ R

n×m, where k log(m/k) ≪ n≪ m.

• Provably good reconstruction algorithms: Basic Pursuit and
Orthogonal Matching Pursuit.
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Proposed Sampling: Signals from a Union of Subspaces

Lu and Do, 2004

• X : a union of subspaces

X =
⋃

γ∈Γ

Sγ, where Sγ are subspaces of a Hilbert space H.

• A: sequence of linear functionals by {ψn}n∈Λ that return measurements

bn = 〈x, ψn〉H, n ∈ Λ.

E.g. ψn is the point spread function of the n-sensing device.

• Goals:

– Fundamentally extend traditional sampling theorems which are based
on the single vector space model.

– More efficient sampling/sensing schemes for an unknown object x by
exploring the prior information that x ∈ X , instead of just x ∈ H.
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Example 1: Stream of Diracs

0 T t

x(t) =
K∑

k=1

ckδ(t− tk),

• If we fix the locations of Diracs γ
def
= (t1, t2, . . . , tK) then

x ∈ Sγ
def
= span{δ(t− t1), . . . , δ(t− tK)}, dim(Sγ) = K.

• With all possible unknown locations, the unknown signal exactly lies on
a union of subspaces

x ∈ X
def
=

⋃

γ∈RK

Sγ, dim(Sγ) = K.
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Example 2: Overlapping Echoes

• Return signal contains up to K overlapping echoes:

x(t) =

K∑

k=1

ckφ(t− tk),

where φ(t) is a known pulse shape, but delays {tk}
K
k=1 and amplitudes

{ck}
K
k=1 are unknown.

• Applications: geophysics, radar, sonar, communications,...

• The inverse problem: find out the delays and amplitudes from a limited
number of samples of the return signal, have been extensively studied.

• Note: the sampling problem for overlapping echos using {ψn(t)}N
n=1

is equivalent for stream of Diracs using
{
ψ̊n(t)

}N

n=1
, where ψ̊n(τ) =

∫
ψn(t)φ(t− τ)dt.
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Example 3: Piecewise Polynomials or

Non-uniform Splines
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Similarly: Fix break-points / knots ⇒ one subspace
With unknown break-points / knots ⇒ union of subspaces.
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Example 4: Sparse Approximations

• Consider all K-term approximations using a fixed basis or dictionary
{φn}

∞
n=1 (e.g. a Fourier or wavelets basis) as

x̂K =
∑

n∈IK

cnφn,

where IK is a set of K selected basis functions or atoms.

• These represent all compressed signals by transform coding or denoised
signals by thresholding.

• They lie exactly on a union of subspaces.
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A Geometrical Viewpoint

Representation Space

S1

S2

S3
PS1

PS2

PS3

• X = S1 ∪ S2 ∪ S3.

• Sampling by {〈x, ψn〉}n is equivalent to projecting the signals to a lower
dimensional representation space.

• The union of subspace “structure” is preserved ⇐⇒ Signals are uniquely
determined by their projections.

• Dimension is reduced, without loss of information.

14



Not All Samplings (Representation Spaces)

Are The Same

S1

S2
S3

PS1PS2

PS3

Unsuitable Representation Space

S1

S2

S3
PS1

PS2

PS3

Ill-Conditioned Representation Space
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Connection to Dimensionality Reduction

“Swiss roll” data set

After PCA After ISOMAP
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Key Questions

X =
⋃

γ∈Γ

Sγ, where Sγ are subspaces of a Hilbert space H,

A : x 7→ bn = 〈x, ψn〉H, n ∈ Λ.

• When each object x ∈ X is uniquely represented by its sampling data
{〈x, ψn〉}n∈Λ?

• What is the minimum sampling requirement for a signal class X ?

• What are the optimal sampling functions {ψn}n∈Λ?

• What are algorithms to reconstruct a signal x ∈ X from its sampling
data {〈x, ψn〉}n∈Λ?

• How stable is the reconstruction in the presence of noise and model
mismatch?
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Conditions on the Sampling Operator

X =
⋃

γ∈Γ

Sγ, A : x 7→ bn = 〈x, ψn〉H, n ∈ Λ,

Definitions:

• We call A an invertible sampling operator for X if each x ∈ X is uniquely
determined by its sampling data Ax; i.e.

Ax1 6= Ax2, whenever x1 6= x2, x1 ∈ X , x2 ∈ X .

• We call A a stably invertible sampling operator for X if there exist two
constants α > 0 and β <∞ such that for all x1 ∈ X , x2 ∈ X

α‖x1 − x2‖
2
H ≤ ‖Ax1 −Ax2‖

2
l2(Λ) ≤ β‖x1 − x2‖

2
H.

We call α and β stability bounds and the tightest ratio β/α provides a
metric for the stability of the sampling operator.
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Key Observation

• The difficulty in dealing with union of subspaces is that in the previous
definitions, x1 and x2 can be in two different subspaces.

• We introduce the following subspaces:

S̃γ,θ
def
= Sγ + Sθ = {y : y = x1 + x2,where x1 ∈ Sγ, x2 ∈ Sθ} ,

and
X̃ =

⋃

(γ,θ)∈Γ×Γ

S̃γ,θ.

• For example, in the case with streams of K Diracs, S̃γ,θ is a subspace of
up to 2K Diracs.

Proposition: A linear sampling operator A is stably invertible for X with
stability bounds α and β, if and only if for all y ∈ X̃

α‖y‖2
H ≤ ‖Ay‖2

l2(Λ) ≤ β‖y‖2
H,
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Minimum Sampling Requirement

Proposition: A linear sampling operator A is invertible for X if and only if

A is invertible for every S̃γ,θ, (γ, θ) ∈ Γ × Γ.

Proposition: Suppose that A : x 7→ {〈x, ψn〉}
N
n=1 is an invertible sampling

operator for X . Then

N ≥ Nmin
def
= sup

(γ,θ)∈Γ×Γ

dim(S̃γ,θ).

• Example: Streams of K Diracs

Nmin = 2K compare to # of free parameters = 2K

• Example: Piecewise polynomials on an interval with K pieces, each of
degree less than d

Nmin = (2K−1)d compare to # of free parameters = Kd+K−1.

• Note: The reconstruction algorithm in Vetterli et al., 2004 achieves the
minimum sampling in both cases.
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Existence of Minimal Sampling Operators

Proposition Let X =
⋃

γ∈Γ

Sγ be a countable union of subspaces of H.

Suppose that
Nmin = sup

(γ,θ)∈Γ×Γ

dim(S̃γ,θ)

is finite. Then the set of sampling vectors {ψn}
Nmin
n=1 such that the associated

sampling operator A is invertible for X is dense in HNmin.

As a result, consider X as the set of sparse approximations using up to K
basis vectors from a countable basis of H.

• An invertible linear sampling operator requires at least 2K sampling
vectors {ψn}n.

• An arbitrary set of 2K vectors {ψn}n will almost surely leads to an
invertible sampling operator.
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Case Study 1: Streams of Diracs

Consider X = {streams of K Diracs}. If y ∈ S̃γ,θ then

y(t) =
M∑

k=1

ckδ(t− tk), where . . . < tk < tk+1 < . . . , M ≤ 2K.

Let {ψn}
N
n=1 be the set of continuous sampling functions for A, then

(Ay)n = 〈y, ψn〉 =

M∑

k=1

ckψ(tk)

⇒ Ay = Gc, where G ∈ R
N×M , Gn,k = ψn(tk).

Thus, A is invertible for X if and only if G is invertible, or

det([ψn(tk)]
M
n,k=1) 6= 0, for all 1 ≤M ≤ N, t1 < t2 < . . . < tM .
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For N = Nmin = 2K, the set {ψn}
N
n=1 that satisfies the last condition is

called a complete Tchebycheff system.

Tchebycheff systems play an important role in several areas; notably, theory
of approximation, methods of interpolation, numerical analysis.

Numerous examples of Tchebycheff systems, including: power functions,
Gauss kernel, spline polynomials, sin and cos functions.
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Case Study 2: Sparse Approximations

X =



x : x =

∑

k∈I, |I|=K

ckφk



 , where {φk}

∞
k=1 is an orthonormal basis.

A : x 7→ b = Ax, where bn = 〈x, ψn〉

x =
∑

k

ckφk 7→ b = Gc, with Gn,k = 〈φk, ψn〉.

Reconstruction problem: solve c from b = Gc subject to ‖c‖0 ≤ K.

Denote gk = [〈φk, ψ1〉, . . . , 〈φk, ψN〉]T the k-th column of G, and GI =
[gm]m∈I. Then from our propositions, the stability bounds are

α = inf
|I|=2K

λmin(G
T
I GI)

β = sup
|I|=2K

λmax(G
T
I GI)
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Lemma:

α ≥ inf
|I|=2K−1,k/∈I

(
〈gk, gk〉 −

∑

l∈I

|〈gk, gl〉|

)

β ≥ inf
|I|=2K−1,k/∈I

(
〈gk, gk〉 +

∑

l∈I

|〈gk, gl〉|

)

Proposition: Suppose ‖gk‖ = 1 and denote µ1(m) =
sup|I|=m,k/∈I

∑
l∈I|〈gk, gl〉|. Then A is a stably invertible sampling operator

if
µ1(2K − 1) < 1.

Note: Tropp (2004) shows if

µ1(K − 1) + µ1(K) < 1.

the OMP and BP exactly reconstruct the signal.
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Case Study 3: Union of Shift-Invariant Spaces

(Infinite-Dimensional Case)

Definition: S is called a (finitely generated) shift-invariant space, if

SΦ =

{
∑

n∈Z

D∑

k=1

cknφk(t/T − n)

}
,

where Φ = {φk}
K
k=1 are the generating functions.

Signals of interest:

X =
⋃

Φ

SΦ,

Example: signals with unknown spectral support.
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Sparse Tree Representations
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Original signal of length M = 256
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Reconstructed from K = 32 coefficients
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Wavelet coefficients

In many multiscale bases (e.g. wavelets), signals of interest (e.g. piecewise-
smooth) not only have few significant coefficients, but also those significant
coefficients are well-organized in trees.
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A Driving Application

MRI with limited number of measurements: MRI measures Fourier
coefficients of the unknown image sequentially.

A heart image Nonlinear approximation using 3% of
wavelet coefficients

Goal: Reconstruct a same quality image using about 10% of Fourier
coefficients.
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Signal Reconstruction using Sparse Tree Representations

• We propose to exploit the sparse tree representation as additional
prior information for signal reconstruction with limited numbers of
measurements.

• Intuitively, a general sparse representation with K coefficients can be
described with 2K numbers: K for the values and another K for the
locations.

• If these K significant coefficients are known to be organized in trees then
the indexing cost is significantly reduced and hence the total description
of the unknown signal.

• Exploiting this embedded tree structure in addition to the sparse
representation prior in inverse problems would potentially lead to:

1. better reconstructed signals;
2. reconstruction using fewer measurements; and
3. faster reconstruction algorithms.
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Proposed: TOMP – Tree-based Orthogonal Matching

Pursuit

La and Do, 2005

Extension of OMP for solving Ax = b that exploits:

P1 Vector x has sparse structure; i.e. only few entries in x are nonzero or

significant.

P2 Those significant entries of x are well organized in a tree structure.
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Example

Piecewise-smooth signal of length 4096 and take 300 random measurements.
Reconstruction using TOMP (Tree-based Orthogonal Matching Pursuit).
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Using Other Methods

Reconstructions from the same set of measurements using OMP (Orthogonal
Matching Pursuit) and BP (Basis Pursuit).
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Comparison: OMP vs. TOMP
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There is a critical sampling region where TOMP improves reconstruction
by more than 7 dB, or achieves the same reconstruction quality but using
nearly half of number of measurements.
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Conclusion

• Sampling signals from a union of subspaces

– Fundamentally extend traditional sampling theorems which are based
on the single vector space model.

– Sharp results on sampling requirements.

• Signal reconstruction using sparse tree representations

– Significant gains by exploit the additional sparse tree prior.

• Great opportunity for developing new theory and algorithms that could
have impact on applications.
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