Signal Reconstruction from Limited Number of Measurements: Theory and Algorithms

Minh N. Do

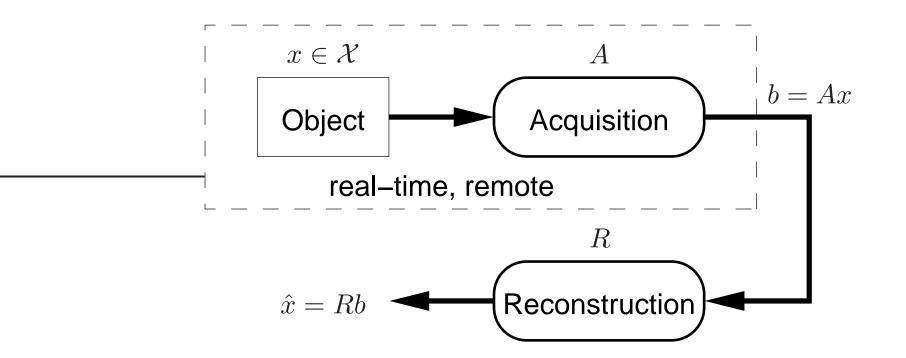
Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Joint work with Yue Lu and Chinh La (UIUC)

Outline

- Introduction
- Sampling signals from a union of subspaces (with Lu)
- Signal reconstruction using sparse tree representations (with La)
- Conclusion and outlook

The Sensing Problem



- Sensing = Sampling = Representing objects with sequence of real numbers.
- **Requirements:** length(b) is small; A is fast and simple.
- **Goal:** use the prior information that $x \in \mathcal{X}$ to construct A and R.

Classical Sampling

Shannon, 1948

- $\mathcal{X} = \mathsf{BL}([-\frac{\pi}{T}, \frac{\pi}{T}]).$
- A: uniform sampling

$$\begin{aligned} x(t) &\mapsto b_n = x(nT) \\ &= (x * \frac{1}{T} \operatorname{sinc}_T)(nT) \quad \text{if } x \in \mathcal{X} \\ &= \langle x, \frac{1}{T} \operatorname{sinc}_T(\cdot - nT) \rangle_{L_2(\mathbb{R})}, \end{aligned}$$

where sinc_T(t) = $\frac{\sin(\pi t/T)}{\pi t/T}$.

• *R*: sinc-interpolation

$$x(t) = \sum_{n \in \mathbb{Z}} x(nT) \operatorname{sinc}_T(t - nT).$$

General Sampling

Unser and Aldroubi, 1994; Unser, 2000

•
$$\mathcal{X} = \overline{\text{span}} \{ \phi(t - nT), \ n \in \mathbb{Z} \}$$

• A: filtering and sampling

$$x(t) \mapsto b_n = (x * \tilde{\psi})(nT) = \langle x, \psi(\cdot - nT) \rangle_{L_2(\mathbb{R})}$$

• *R*:

$$\{b_n\}_{n\in\mathbb{Z}}\mapsto\{c_n\}_{n\in\mathbb{Z}}$$
$$x(t)=\sum_{n\in\mathbb{Z}}c_n\phi(t-nT)$$

• Key: Sampling signals from a shift-invariant or spline-like space.

More General Sampling: Frames

- \mathcal{X} : a Hilbert space.
- A: sequence of linear functionals (including Fourier imaging, tomography,...)

$$x \mapsto b_n = \langle x, \psi_n \rangle_{\mathcal{X}}, \quad n \in \Lambda.$$

If {ψ_n}_{n∈Λ} in a frame of X; i.e. there exist two constants (frame bounds) α > 0 and β < ∞ such that for all x ∈ X

$$\alpha \|x\|_{\mathcal{X}}^2 \le \sum_{n \in \Lambda} |\langle x, \psi_n \rangle|^2 \le \beta \|x\|_{\mathcal{X}}^2,$$

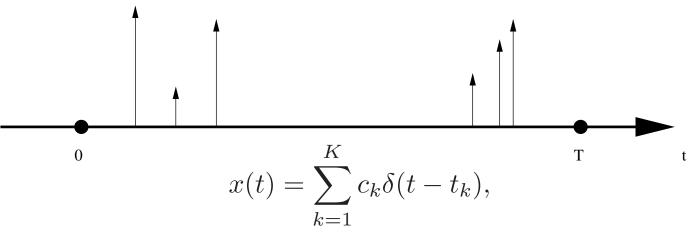
then we can reconstruct x in a numerically stable way from $\{\langle x, \psi_n \rangle\}_{n \in \Lambda}$. The tightest frame ratio β/α provides a metric for this stability. Example: for matrix multiplication $x \mapsto Ax$, frame ratio $\beta/\alpha = (\kappa(A))^2$.

• *R*: using dual frame, frame algorithm, conjugate gradient, consistency,...

New Sampling: Signals with Finite Rate of Innovations

Vetterli, Marziliano, and Blu, 2001; also with Maravic and Dragotti

• Basic model: stream of Diracs



where the weights $\{c_k\}$ and the locations $\{t_k\}$ are unknown.

• Key feature: There is a known finite rate of innovations, but we have find out where are these innovations (e.g. locations of the Diracs).

 \Rightarrow Signals of interest do **not** fill a vector space.

• Key result: Exact reconstruction algorithms for certain signal models and sampling kernels.

Compressed Sensing

Bresler et al., 1999; Donoho, 2004; Candès, Romberg, Tao, 2004; Tropp, 2004; and many others

• \mathcal{X} : objects x in \mathbb{R}^m that are compressible by a fixed basis

 $x \approx \Phi c$, where c is sparse (i.e. few non-zero entries).

• A: take $n \ (n \ll m)$ linear non-adaptive measurements; i.e. $A \in \mathbb{R}^{n \times m}$

$$b = Ax \approx \underbrace{A\Phi}_{M} c$$

- \mathbf{R} : solve c from b = Mc with known M and knowing that c is sparse.
- Key result: All k-sparse c is recoverable from b = Mc for 'most' random $M \in \mathbb{R}^{n \times m}$, where $k \log(m/k) \ll n \ll m$.
- Provably good reconstruction algorithms: Basic Pursuit and Orthogonal Matching Pursuit.

Outline

- Introduction
- Sampling signals from a union of subspaces (with Lu)
- Signal reconstruction using sparse tree representations (with La)
- Conclusion and outlook

Proposed Sampling: Signals from a Union of Subspaces

Lu and Do, 2004

• \mathcal{X} : a union of subspaces

 $\mathcal{X} = \bigcup_{\gamma \in \Gamma} \mathcal{S}_{\gamma}, \quad \text{where } \mathcal{S}_{\gamma} \text{ are subspaces of a Hilbert space } \mathcal{H}.$

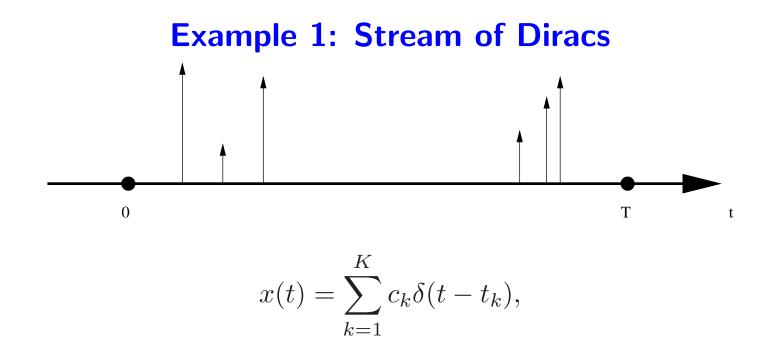
• A: sequence of linear functionals by $\{\psi_n\}_{n\in\Lambda}$ that return measurements

$$b_n = \langle x, \psi_n \rangle_{\mathcal{H}}, \quad n \in \Lambda.$$

E.g. ψ_n is the point spread function of the *n*-sensing device.

• Goals:

- Fundamentally extend traditional sampling theorems which are based on the single vector space model.
- More efficient sampling/sensing schemes for an unknown object x by exploring the prior information that $x \in \mathcal{X}$, instead of just $x \in \mathcal{H}$.



• If we fix the locations of Diracs $\gamma \stackrel{\text{def}}{=} (t_1, t_2, \dots, t_K)$ then

$$x \in \mathcal{S}_{\gamma} \stackrel{\text{def}}{=} \operatorname{span}\{\delta(t-t_1), \dots, \delta(t-t_K)\}, \quad \dim(S_{\gamma}) = K.$$

• With all possible unknown locations, the unknown signal exactly lies on a union of subspaces

$$x \in \mathcal{X} \stackrel{\mathrm{def}}{=} \bigcup_{\gamma \in \mathbb{R}^K} \mathcal{S}_{\gamma}, \quad \dim(S_{\gamma}) = K.$$

Example 2: Overlapping Echoes

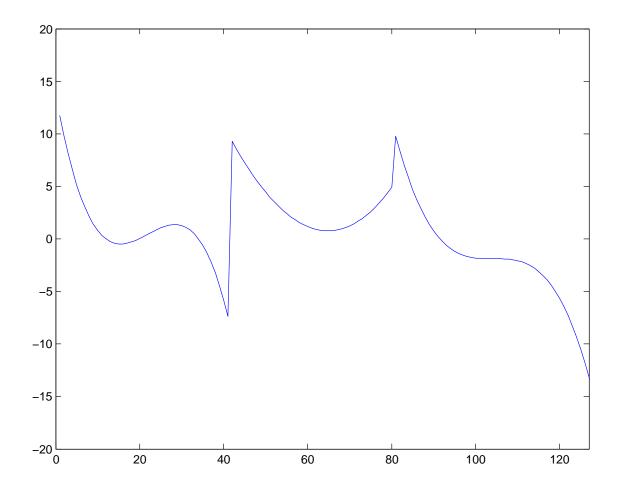
• Return signal contains up to K overlapping echoes:

$$x(t) = \sum_{k=1}^{K} c_k \phi(t - t_k),$$

where $\phi(t)$ is a known pulse shape, but delays $\{t_k\}_{k=1}^K$ and amplitudes $\{c_k\}_{k=1}^K$ are unknown.

- **Applications:** geophysics, radar, sonar, communications,...
- The inverse problem: find out the delays and amplitudes from a limited number of samples of the return signal, have been extensively studied.
- Note: the sampling problem for overlapping echos using $\{\psi_n(t)\}_{n=1}^N$ is equivalent for stream of Diracs using $\{\psi_n(t)\}_{n=1}^N$, where $\psi_n(\tau) = \int \psi_n(t)\phi(t-\tau)dt$.

Example 3: Piecewise Polynomials or Non-uniform Splines



Similarly: Fix break-points / knots \Rightarrow one subspace With unknown break-points / knots \Rightarrow union of subspaces.

Example 4: Sparse Approximations

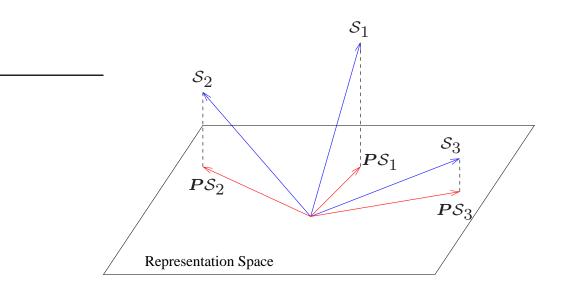
• Consider all *K*-term approximations using a fixed basis or dictionary $\{\phi_n\}_{n=1}^{\infty}$ (e.g. a Fourier or wavelets basis) as

$$\hat{x}_K = \sum_{n \in I_K} c_n \phi_n,$$

where I_K is a set of K selected basis functions or atoms.

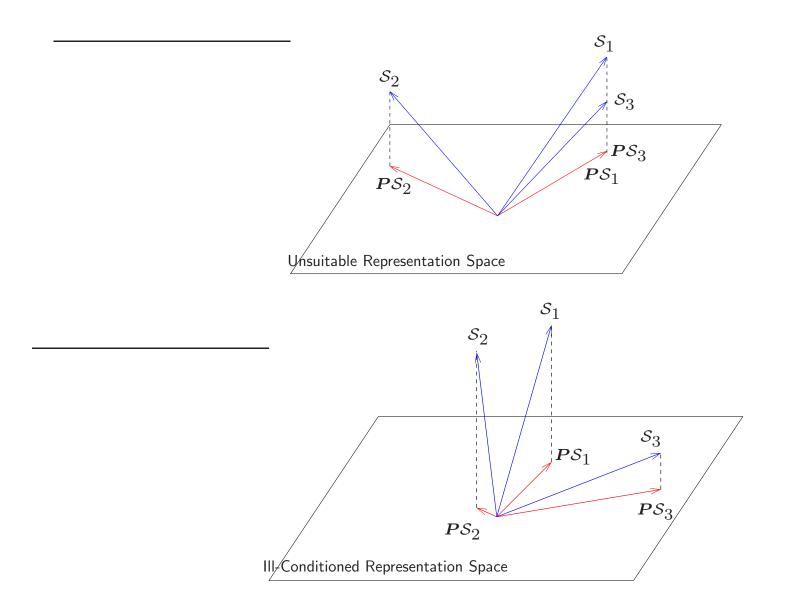
- These represent all compressed signals by transform coding or denoised signals by thresholding.
- They lie exactly on a union of subspaces.

A Geometrical Viewpoint

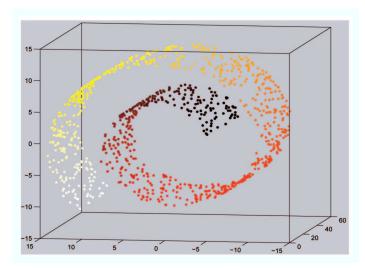


- $\mathcal{X} = \mathcal{S}_1 \cup \mathcal{S}_2 \cup \mathcal{S}_3.$
- Sampling by $\{\langle x, \psi_n \rangle\}_n$ is equivalent to projecting the signals to a lower dimensional representation space.
- Dimension is reduced, without loss of information.

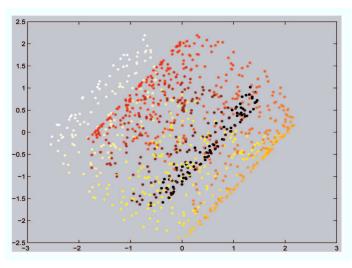
Not All Samplings (Representation Spaces) Are The Same



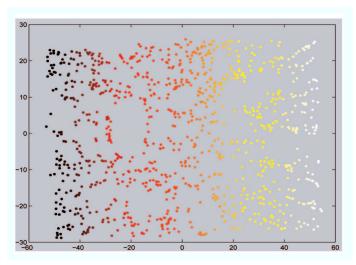
Connection to Dimensionality Reduction



"Swiss roll" data set



After PCA



After ISOMAP

Key Questions

 $\mathcal{X} = \bigcup_{\gamma \in \Gamma} \mathcal{S}_{\gamma}, \quad \text{where } \mathcal{S}_{\gamma} \text{ are subspaces of a Hilbert space } \mathcal{H},$

$$A: x \mapsto b_n = \langle x, \psi_n \rangle_{\mathcal{H}}, \quad n \in \Lambda.$$

- When each object $x \in \mathcal{X}$ is uniquely represented by its sampling data $\{\langle x, \psi_n \rangle\}_{n \in \Lambda}$?
- What is the minimum sampling requirement for a signal class \mathcal{X} ?
- What are the optimal sampling functions $\{\psi_n\}_{n\in\Lambda}$?
- What are algorithms to reconstruct a signal $x \in \mathcal{X}$ from its sampling data $\{\langle x, \psi_n \rangle\}_{n \in \Lambda}$?
- How stable is the reconstruction in the presence of noise and model mismatch?

Conditions on the Sampling Operator

$$\mathcal{X} = \bigcup_{\gamma \in \Gamma} \mathcal{S}_{\gamma}, \qquad A : x \mapsto b_n = \langle x, \psi_n \rangle_{\mathcal{H}}, \quad n \in \Lambda,$$

Definitions:

 We call A an invertible sampling operator for X if each x ∈ X is uniquely determined by its sampling data Ax; i.e.

$$Ax_1 \neq Ax_2$$
, whenever $x_1 \neq x_2$, $x_1 \in \mathcal{X}$, $x_2 \in \mathcal{X}$.

• We call A a stably invertible sampling operator for \mathcal{X} if there exist two constants $\alpha > 0$ and $\beta < \infty$ such that for all $x_1 \in \mathcal{X}, x_2 \in \mathcal{X}$

$$\alpha \|x_1 - x_2\|_{\mathcal{H}}^2 \le \|Ax_1 - Ax_2\|_{l_2(\Lambda)}^2 \le \beta \|x_1 - x_2\|_{\mathcal{H}}^2.$$

We call α and β stability bounds and the tightest ratio β/α provides a metric for the stability of the sampling operator.

Key Observation

- The difficulty in dealing with union of subspaces is that in the previous definitions, x_1 and x_2 can be in two different subspaces.
- We introduce the following subspaces:

$$\widetilde{\mathcal{S}}_{\gamma,\theta} \stackrel{\text{def}}{=} \mathcal{S}_{\gamma} + \mathcal{S}_{\theta} = \left\{ y : y = x_1 + x_2, \text{where } x_1 \in \mathcal{S}_{\gamma}, \ x_2 \in \mathcal{S}_{\theta} \right\},$$

and

$$\widetilde{\mathcal{X}} = \bigcup_{(\gamma,\theta)\in\Gamma imes\Gamma}\widetilde{\mathcal{S}}_{\gamma,\theta}.$$

• For example, in the case with streams of K Diracs, $\widetilde{S}_{\gamma,\theta}$ is a subspace of up to 2K Diracs.

Proposition: A linear sampling operator A is stably invertible for \mathcal{X} with stability bounds α and β , *if and only if* for all $y \in \widetilde{\mathcal{X}}$

$$\alpha \|y\|_{\mathcal{H}}^2 \le \|Ay\|_{l_2(\Lambda)}^2 \le \beta \|y\|_{\mathcal{H}}^2,$$

Minimum Sampling Requirement

Proposition: A linear sampling operator A is invertible for \mathcal{X} if and only if A is invertible for every $\widetilde{\mathcal{S}}_{\gamma,\theta}$, $(\gamma,\theta) \in \Gamma \times \Gamma$.

Proposition: Suppose that $A: x \mapsto \{\langle x, \psi_n \rangle\}_{n=1}^N$ is an invertible sampling operator for \mathcal{X} . Then

$$N \geq N_{\min} \stackrel{\text{def}}{=} \sup_{(\gamma,\theta)\in\Gamma\times\Gamma} \dim(\widetilde{\mathcal{S}}_{\gamma,\theta}).$$

• **Example:** Streams of *K* Diracs

 $N_{\min} = 2K$ compare to # of free parameters = 2K

• **Example:** Piecewise polynomials on an interval with K pieces, each of degree less than d

 $N_{\min} = (2K-1)d$ compare to # of free parameters = Kd + K - 1.

• Note: The reconstruction algorithm in Vetterli et al., 2004 achieves the minimum sampling in both cases.

Existence of Minimal Sampling Operators

Proposition Let $\mathcal{X} = \bigcup_{\gamma \in \Gamma} S_{\gamma}$ be a countable union of subspaces of \mathcal{H} . Suppose that

$$N_{\min} = \sup_{(\gamma,\theta)\in\Gamma imes\Gamma}\dim(\mathcal{S}_{\gamma, heta})$$

is finite. Then the set of sampling vectors $\{\psi_n\}_{n=1}^{N_{\min}}$ such that the associated sampling operator A is invertible for \mathcal{X} is dense in $\mathcal{H}^{N_{\min}}$.

As a result, consider \mathcal{X} as the set of sparse approximations using up to K basis vectors from a countable basis of \mathcal{H} .

- An invertible linear sampling operator requires at least 2K sampling vectors $\{\psi_n\}_n$.
- An arbitrary set of 2K vectors $\{\psi_n\}_n$ will almost surely leads to an invertible sampling operator.

Case Study 1: Streams of Diracs

Consider $\mathcal{X} = \{ \text{streams of } K \text{ Diracs} \}$. If $y \in \widetilde{\mathcal{S}}_{\gamma,\theta}$ then

$$y(t) = \sum_{k=1}^{M} c_k \delta(t - t_k), \text{ where } \dots < t_k < t_{k+1} < \dots, M \le 2K.$$

Let $\{\psi_n\}_{n=1}^N$ be the set of continuous sampling functions for A, then

$$(Ay)_n = \langle y, \psi_n \rangle = \sum_{k=1}^M c_k \psi(t_k)$$

$$\Rightarrow Ay = Gc$$
, where $G \in \mathbb{R}^{N \times M}$, $G_{n,k} = \psi_n(t_k)$.

Thus, A is invertible for \mathcal{X} if and only if G is invertible, or

 $\det([\psi_n(t_k)]_{n,k=1}^M) \neq 0, \quad \text{for all } 1 \le M \le N, \ t_1 < t_2 < \ldots < t_M.$

For $N = N_{\min} = 2K$, the set $\{\psi_n\}_{n=1}^N$ that satisfies the last condition is called a complete Tchebycheff system.

Tchebycheff systems play an important role in several areas; notably, theory of approximation, methods of interpolation, numerical analysis.

Numerous examples of Tchebycheff systems, including: power functions, Gauss kernel, spline polynomials, \sin and \cos functions.

Case Study 2: Sparse Approximations

$$\mathcal{X} = \left\{ x : x = \sum_{k \in I, |I| = K} c_k \phi_k \right\}, \text{ where } \{\phi_k\}_{k=1}^{\infty} \text{ is an orthonormal basis.}$$

$$A: \qquad x \mapsto b = Ax, \quad \text{where } b_n = \langle x, \psi_n \rangle$$
$$x = \sum_k c_k \phi_k \mapsto b = Gc, \quad \text{with } G_{n,k} = \langle \phi_k, \psi_n \rangle.$$

Reconstruction problem: solve c from b = Gc subject to $||c||_0 \leq K$.

Denote $g_k = [\langle \phi_k, \psi_1 \rangle, \dots, \langle \phi_k, \psi_N \rangle]^T$ the k-th column of G, and $G_I = [g_m]_{m \in I}$. Then from our propositions, the stability bounds are

$$\alpha = \inf_{\substack{|I|=2K}} \lambda_{\min}(G_I^T G_I)$$
$$\beta = \sup_{\substack{|I|=2K}} \lambda_{\max}(G_I^T G_I)$$

Lemma:

$$\alpha \ge \inf_{\substack{|I|=2K-1, k \notin I}} \left(\langle g_k, g_k \rangle - \sum_{l \in I} |\langle g_k, g_l \rangle| \right)$$
$$\beta \ge \inf_{\substack{|I|=2K-1, k \notin I}} \left(\langle g_k, g_k \rangle + \sum_{l \in I} |\langle g_k, g_l \rangle| \right)$$

Proposition: Suppose $||g_k|| = 1$ and denote $\mu_1(m) = \sup_{|I|=m,k\notin I} \sum_{l\in I} |\langle g_k, g_l \rangle|$. Then A is a stably invertible sampling operator if $\mu_1(2K-1) < 1$.

Note: Tropp (2004) shows if

$$\mu_1(K-1) + \mu_1(K) < 1.$$

the OMP and BP exactly reconstruct the signal.

Case Study 3: Union of Shift-Invariant Spaces (Infinite-Dimensional Case)

Definition: S is called a (finitely generated) shift-invariant space, if

$$\mathcal{S}_{\Phi} = \left\{ \sum_{n \in \mathbb{Z}} \sum_{k=1}^{D} c_{kn} \phi_k(t/T - n) \right\},\,$$

where $\Phi = \{\phi_k\}_{k=1}^K$ are the generating functions.

Signals of interest:

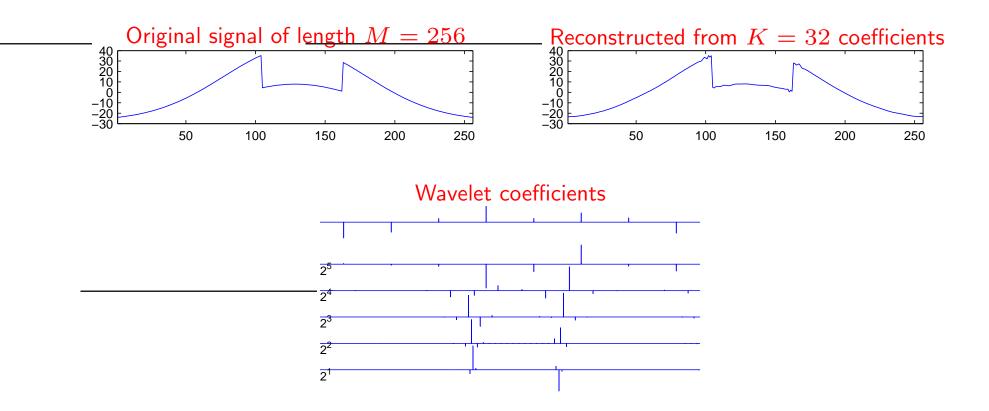
$$\mathcal{X} = \bigcup_{\Phi} \mathcal{S}_{\Phi},$$

Example: signals with unknown spectral support.

Outline

- Introduction
- Sampling signals from a union of subspaces (with Lu)
- Signal reconstruction using sparse tree representations (with La)
- Conclusion and outlook

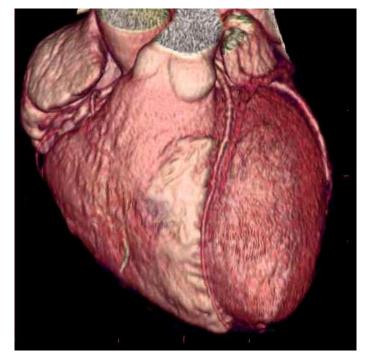
Sparse Tree Representations



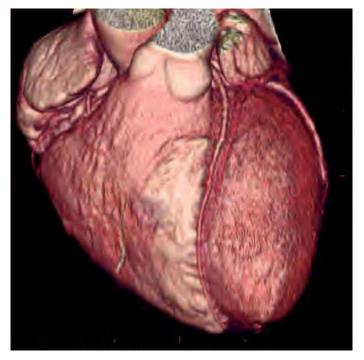
In many multiscale bases (e.g. wavelets), signals of interest (e.g. piecewisesmooth) not only have few significant coefficients, but also those significant coefficients are well-organized in trees.

A Driving Application

MRI with limited number of measurements: MRI measures Fourier coefficients of the unknown image sequentially.



A heart image



Nonlinear approximation using 3% of wavelet coefficients

Goal: Reconstruct a same quality image using about 10% of Fourier coefficients.

Signal Reconstruction using Sparse Tree Representations

- We propose to exploit the sparse <u>tree</u> representation as additional prior information for signal reconstruction with limited numbers of measurements.
- Intuitively, a general sparse representation with K coefficients can be described with 2K numbers: K for the values and another K for the locations.
- If these K significant coefficients are known to be organized in trees then the indexing cost is significantly reduced and hence the total description of the unknown signal.
- Exploiting this embedded tree structure in addition to the sparse representation prior in inverse problems would potentially lead to:
 - 1. better reconstructed signals;
 - 2. reconstruction using fewer measurements; and
 - 3. faster reconstruction algorithms.

Proposed: TOMP – Tree-based Orthogonal Matching Pursuit

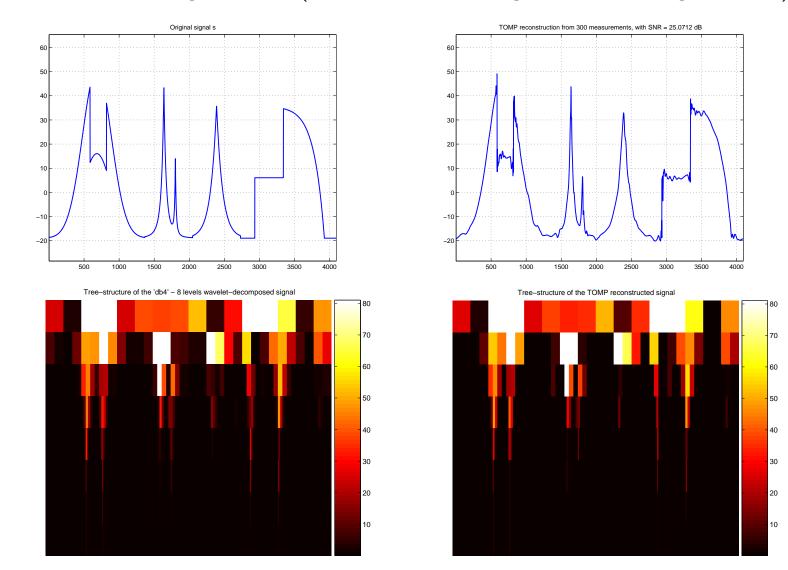
La and Do, 2005

Extension of OMP for solving Ax = b that exploits:

- **P1** Vector x has sparse structure; i.e. only few entries in x are nonzero or significant.
- **P2** Those significant entries of x are well organized in a tree structure.

Example

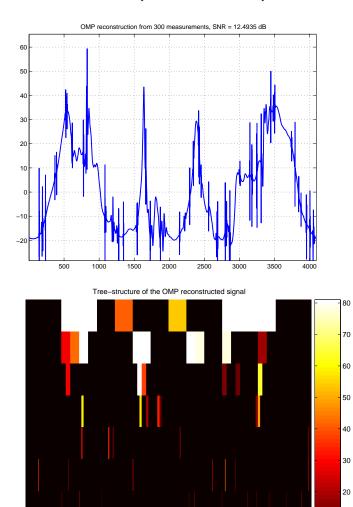
Piecewise-smooth signal of length 4096 and take 300 random measurements. Reconstruction using TOMP (Tree-based Orthogonal Matching Pursuit).

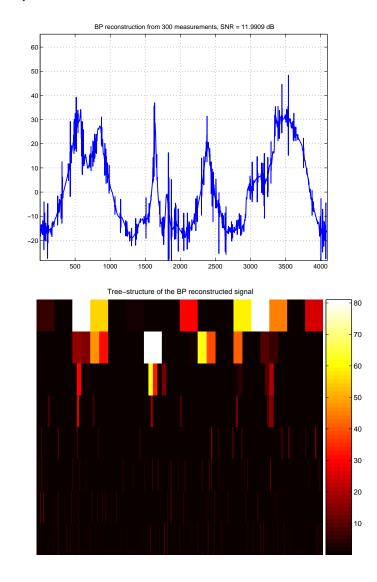


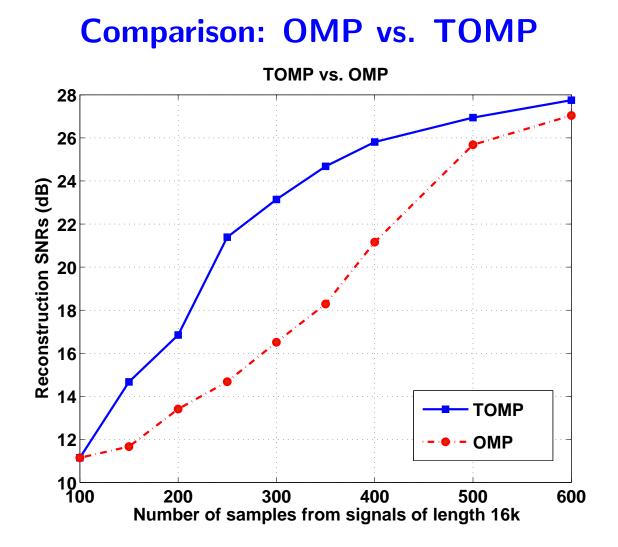
Using Other Methods

Reconstructions from the same set of measurements using OMP (Orthogonal Matching Pursuit) and BP (Basis Pursuit).

10







There is a critical sampling region where TOMP improves reconstruction by more than 7 dB, or achieves the same reconstruction quality but using nearly half of number of measurements.

Conclusion

- Sampling signals from a union of subspaces
 - Fundamentally extend traditional sampling theorems which are based on the single vector space model.
 - Sharp results on sampling requirements.
- Signal reconstruction using sparse tree representations
 - Significant gains by exploit the additional sparse tree prior.
- Great opportunity for developing new theory and algorithms that could have impact on applications.

References

- Y. Lu and M. N. Do, A geometrical approach to sampling signals with finite rate of innovation, *IEEE International Conference on Acoustics, Speech, and Signal Processing*, Montreal, Canada, May 2004.
- Y. Lu and M. N. Do, Sampling signals from a union of subspaces, *Manuscript*, 2005.
- C. La and M. N. Do, Signal reconstruction using sparse tree representations, SPIE Conference on Wavelet Applications in Signal and Image Processing, San Diego, Aug. 2005.
- C. La and M. N. Do, Tree-based orthogonal matching pursuit algorithm for signal reconstruction, *IEEE International Conference on Image Processing*, Atlanta, Oct. 2006.

www.ifp.uiuc.edu/~minhdo/publications