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Contourlet Coe�cient Relationships
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Marginal Statistics of Contourlet Coe�cients
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Marginal statistics of two �nest subbands of the image \Peppers."

The kurtoses of the two distributions are measured at 24.50 and 19.40,
showing that the coe�cients are highly non-Gaussian.
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Joint Statistics
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Top: Joint histograms ofnext neighbors
Bottom : Joint histograms ofdistance(three coe�cients away) neighbors

1. Image modeling using the contourlet transform 5



Conditional Distribution
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The kurtoses of the distributions are measured at3:90, 2:90, and 2:99.

) Contourlet coe�cients are non-Gaussian but conditionallyGaussian.
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Dependence Characterization using Mutual Information

Mutual information estimates between a contourlet coe�cient (X ) and its
parent (P X ), its spatial neighbors (NX ), and its directional cousins (CX ).

Lena Barbara Peppers
I (X ; P X ) 0.11 0.14 0.10
I (X ; NX ) 0.23 0.58 0.17
I (X ; CX ) 0.19 0.39 0.14

Mutual information estimates with asingle parent, neighbor, and cousin.

Lena Barbara Peppers
I (X ; P X ) 0.11 0.14 0.08
I (X ; NX 1) 0.09 0.31 0.07
I (X ; NX 2) 0.07 0.27 0.05
I (X ; CX 1) 0.08 0.20 0.06
I (X ; CX 2) 0.06 0.17 0.05
I (X ; CX 3) 0.06 0.20 0.04
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Wavelet-domain Hidden Markov Models [CrouseNB:98]

Wavelet HMT models coe�cients on each direction independently.
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Contourlet-domain Hidden Markov Tree Models
[PoD:04]
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Contourlet HMT models allinter-scale, inter-direction, and inter-location
independencies.
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Denoising Results: Zelda

Left to right, top to bottom: (a) \Zelda" image, (b) noisy image (14:61dB),
(c) wiener2 (25:78dB), (d) wavelet thresholding (26:05dB), (e) wavelet
HMT ( 27:63dB), and (f) contourlet HMT (27:07dB).
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Texture Retrieval Results: Brodatz Database

Average retrieval rates
wavelet HMT contourlet HMT

90.87% 93.29%

Top: Waveletsdo better (> 5%).
Bottom : Contourlets do better
(> 5%).
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Frequency Partition of CRISP-Contourlets [LuD:03]
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directional highpass:3 � 2n (n = 1 ; 2; : : :) directions at each level.
lowpass bands:2 directional lowpass bands.
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Intuition Behind the Frequency Partitioning

Proposition 1. For a spectrum supportXF to be critically sampled by a
matrix M , the area of the support must be 4� 2

j det( M ) j .

9 67 5 4

0

1 3

5 64 7 8 9

2

0

13 2

8

! 1

! 2 ( �; � )

( � �; � � )

For each directional bandpass region

area = 4 � 2=(4m � 2n )

Proposition 2. With 3�2l directions, the spectrum supportRl
k of bandpass

directional subbands of the CRISP-contourlet transform iscritically sampled
by S l

k = diag(2l ; 4) (or diag(4; 2l )):

X

m 2 Z2

1R l
k
(! � 2� (S l

k ) � T m ) = 1 :
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Sampling Matrices for CRISP-Contourlets
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� Each directional bandpass pair can
be shifted and combined to form a
parallelogram support.

� The parallelogram support can be
maximally decimated.

� If the shifts satisfy certain conditions,
the split and shifted support can also
be maximally decimated.

The decimation matrices (forn > 1) in CRISP-contourlets arediagonal:

M (m;n )
v =

�
2m + n +2 0

0 2m +2

�
and M (m;n )

h =
�

2m +2 0
0 2m + n +2

�

2. Critically sampled (CRISP) contourlet transform 15



CRISP-Contourlet Transform { Block Diagram
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Arbitrary multiscale and multidirectional decompositionthrough aniterated
combinationof 3 �lter banks:

� Type \L" outputs are followed by \SCB" �lters;

� Type \A" outputs are followed by \PAR" �lters.

� Type \B" outputs are followed by \SPR" �lters.
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Iteration for Finer Directionality

� The number of directions can be3 � 2n , for all n � 1.

� The re�nement of directionality is achieved via an iteration of two �lter
banks.
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CRISP-Contourlet Transform using
Nonuniform Filter Banks

D

A

A

A

B

B

B

9

9 8 67 5 4

1 3

5 64 7 8

2

13 2

0

! 1

! 2 ( �; � )

( � �; � � )

2. Critically sampled (CRISP) contourlet transform 18



Outline

1. Image modeling using the contourlet transform

2. Critically sampled (CRISP) contourlet transform

3. Image denoising and enhancement using
the nonsubsampled contourlet transform

4. Outlook

3. Image denoising and enhancement using the nonsubsampledcontourlet transform 19



Motivation

For image-analysis applications (denoising, enhancement, ...), we want:

� Directional multiresolutionshift-invariant image representation

� Structured transforms withfast algorithms

� Critical sampling isnot critical

Answer: Nonsubsampled Contourlet Transform (NSCT)
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Critically-Sampled Filter Banks
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Nonsubsampled Filter Banks
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Advantages:

� Shift-invariant

� Fast transformsvia the \�a trous" algorithm
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Iterated Nonsubsampled Contourlet Transform:
Illustration
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Key: Filtering \with holes" using the equivalent sampling matrices
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Example of Nonsubsampled Contourlet Transform (1/2)

(a)

(b) (c)

(a) Original image. (b) Lowpass image. (c) Bandpass directional images.
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Example of Nonsubsampled Contourlet Transform (2/2)

Finest bandpass directional images
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Filter Design for the
Nonsubsampled Contourlet Transform (NSCT)

We have to design for two cases:pyramid �lters for the LP andfan �lters
for the DFB

H 0(z )

H 1(z )

G0(z )

G1(z )

H 0(z )

H 1(z )

G0(z )

G1(z )

In both casesperfect reconstruction means

H0(z)G0(z) + H1(z)G1(z) = 1

This is easier than biorthogonal �lter bank condition.
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How to Avoid Spectral Factorization?

Answer:Use 1-D to 2-D mapping (a.k.a. McClellan transformation)

We �rst design a set of 1-D polynomials that solve

P0(x)Q0(x) + P1(x)Q1(x) = 1 :

Then choose a mapping functionf (z) such thatjf (ej w )j � 1 and substitute

H i (z) = Pi (x)jx = f (z ) ; and Gi (z) = Qi (x)jx = f (z )

for i = 0 ; 1.
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Good Things about Mapping [Cunha]

� It preserves perfect reconstruction

� If mapping is symmetric, then resulting 2-D �lter also symmetric
) easy linear phase FIR design

� Fast implementation through lifting factorization

� Easy control of the frequency response through the mapping �lter:
If Q1(x) = Q0(� x) then H1(z) will have the complementary response
of H0(z).

� Filters can be symmetric vertically and horizontally
) allows for simple symmetric extension.
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How about Vanishing Moments?

Proposition 3. [CunhaD:04] SupposeP(x) and Q(x) are such that

P(x)Q(x) + P(� x)Q(� x) = 1

and further that P(x) = ( x0 + x)N P RP (x), Q(x) = ( x0 + x)N Q RQ (x):

Then if we set

f (x; y) = � x0 + ( x + 1) N x (y + 1) N y ~f (x; y)

the 2-D function P(f (x; y)) will have zeroes of multiplicityNx NP and
NyNP at x = � 1 and y = � 1 respectively.

Similarly Q(f (x; y)) will have zeroes of multiplicityNx NQ and NyNQ at
x = � 1 and y = � 1 respectively.
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Design Mapping Function f (x; y) for Pyramid Filters

A simple form off (x; y) is by using maximally at �lters:

PN;L (x) := (1 + x)N
L � 1� NX

l =0

�
N + l � 1

l

�
2� N � l (1 � x) l

Then set
f (x; y) = � 1 + 2PN 0;L 0(x)PN 1;L 1(y)

so that f (1; 1) = 1
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Design Example for Pyramid Filters
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Design Mapping Function f (x; y) for Fan Filters

We can usediamond maximally at �lters
and then modulate to getfan �lters:

f N (x; y ) = 2 � 2N
N � 1X

i =0

N � 1� iX

j =0

� N

i

�� N

j

�
(1 � x ) i (1 + x )N � i (1 � y ) j (1 + y)N � j

+ 2 � 2N � 1
N � 1X

i =0

� N

i

�� N

i

�
(1 � x ) i (1 + x )N � i (1 � y ) i (1 + y)N � j

Then setf (x; y) = � 1 + f N (x; y) as before.

f N : N=1 N=3 N=6

3. Image denoising and enhancement using the nonsubsampledcontourlet transform 32



Denoising Result: \Hat Zoom"

Comparison against SI-Wavelet (nonsubsampled wavelet transform)
methods usingBayes shrink with adaptive soft thresholding[Cunha]

Noisy Lena SI-Wavelet NSCT Den
PSNR 22.13db PSNR 31.82dB PSNR 32.14dB
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Denoising Result: \Peppers"

Noisy Lena SI-Wavelet NSCT Den
PSNR 22.14db PSNR 31.38dB PSNR 31.53dB
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Denoising Result: \Barbara"

Noisy \Barbara" SI-Wavelet NSCT Den
PSNR 22.15db PSNR 29.34dB PSNR 29.95dB
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Comparison Against SI-Wavelet Method

\Lena" PSNR (dB) \Peppers" PSNR (dB)

Std Noisy SI-Wavelet NSCT Noisy SI-Wavelet NSCT

� = 10 28.13 35.02 35.07 28.17 34.23 34.03

� = 20 22.13 31.83 32.14 22.14 31.38 31.53

� = 30 18.63 29.96 30.35 18.63 29.64 29.92

� = 35 17.29 29.24 29.62 17.29 28.93 29.26

PSNR results of the tested denoising schemes for di�erent noise levels.
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Another Application: Image Enhancement [Zhou]

Image Enhancement Algorithm ...

� Nonsubsampled contourlet decomposition

� Nonlinear mapping on the coe�cients

{ Zero-out noises
{ Keep strong edges or features
{ Enhance weak edges or features

� Nonsubsampled contourlet reconstruction
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Image Enhancement Result: Barbara

(a)

(b) (c)

(a) Original image. (b) Enhanced by DWT. (c) Enhanced by NSCT.

3. Image denoising and enhancement using the nonsubsampledcontourlet transform 38



Image Enhancement Result: OCT Image

(a)

(b) (c)

(a) Original OCT image. (b) Enhanced by DWT. (c) Enhanced by NSCT.
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Speculation: Another \Wavelet" Story ?

Applications

(signal processing)(harmonics analysis)
Pyramids Filter banks

Multiresolution

Analysis

Wavelets
(computer vision)

Theory Algorithms

1-D Story: scaleand shift
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Speculation: Another \Wavelet" Story ?

(harmonics analysis)

Multiresolution

Directional

Analysis

Hough transformCurvelets

ApplicationsAlgorithmsTheory

(computer vision) (signal processing)
Directional filter bank

2-D Story: scale, space, and direction
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Where is The Complexity in Images?
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Operational Rate-Distortion by JPEG-2000
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Beyond 2-D and Single Image...
New Audio-Visual Paradigm

� Existingaudio-visual recording and playback

{ Single camera and microphone
{ Little processing
{ Viewers: passive

� Future

{ Sensors (cameras, microphones) are cheap
{ Massive computing and storage capabilities are available
{ Viewers: interactive, immersive, remote

) Require new signal processing theory and algorithms

Note: Video can be treated as a special case (frames in one shoot�
multiple images of a scene)
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Image-based Rendering

Processing Playback

Recording

Archive

� Goal: Synthesize arbitrary viewpoint from a set of �xed sensors.

� Input data at a huge rate, for example: 12 M/frame� 10 frame/s � 15
views = 1.8 Gbps.

� Challenge: New representations for IBR data that incorporate geometric
constraints.
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Light-�eld Parameterization

image plane
surface

L(u',v',s',t')

L(u,v,s,t)

s

t

u

v

camera plane object

� Each light ray is addressed by a 4-D coordinate(u; v; s; t).

� Assuming the object surface is Lambertian, thenL(u; v; s; t) =
L(u0; v0; s0; t0).

) The 4-D light �eld data L(u; v; s; t) lie in lower dimensional manifolds.
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Epipolar Constraint from Multiple Views

epipolar image

u

s

t

� Linear singularities in epipolar planes ...ridgelets?

� Curved singularities in image planes ...contourlets?

� Ultimate: High dimensional representations that can deal e�ectively
with lower dimensional singularities.
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