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Abstract—We propose a Fourier analytical condition linking
alias-free sampling with the Fourier transform of the indicator
function defined on the given frequency support. Our discussns
center around how to develop practical computation algorihms
based on the proposed analytical condition. We address saais-
sues along this line, including the derivation of simple clsed-form
expressions for the Fourier transforms of the indicator furctions
defined on arbitrary polygonal and polyhedral domains; a com
plete and nonredundant enumeration of all quantized samplig
lattices via the Hermite normal forms of integer matrices; and a
quantitative analysis of the approximation of the original infinite
Fourier condition by using finite computations. Combining these
results, we propose a computational testing procedure thatan
efficiently search for the optimal alias-free sampling latices for a
given polygonal or polyhedral shaped frequency domain. Seval

examples are presented to show the potential of the proposed

algorithm in multidimensional filter bank design, as well asin
applications involving the design of efficient sampling paerns
for multidimensional bandlimited signals.

Index Terms—densest sampling, critical sampling, packing,
tiling, maximal decimation, optimal sampling, nonredundant
filter banks, Fourier transforms of indicator functions, Poisson
summation formula, divergence theorem.

I. INTRODUCTION
The classical Whittaker-

orem [1], [2] states that a one-dimensional bandlimitedciaig
can be exactly reconstructed from its uniform samples if tHp
sampling rate is beyond the Nyquist rate. The situation

similar in multidimensional cases [3]. In general, the efffef

the uniform sampling process in the frequency domain is th £

the spectrum of the original bandlimited signal gets reyéd

over a lattice whose density is inversely proportional te th
sampling density. If the shifted copies of the spectrum db nB

The search for alias-free sampling lattices for a given
frequency support, and in particular for those latticesech
ing minimum sampling densities, is a fundamental issue in
various signal processing applications that involve thsigie
of efficient acquisition schemes for bandlimited signatsm®
examples include image and video processing [4], volume
sampling in computer graphics [5], Fourier imaging, and
the distributed sensing of various physical phenomena [6]-
[8]. As a special case of alias-free sampling, the concept of
critical samplingalso plays an important role in the theory
and design of critically sampled (a.k.a. maximally deciscit
multidimensional filter banks [9]-[11].

The study of optimal sampling lattices is a classical proble
[3], [12]. Earlier efforts often focus on cases when the sig-
nals are bandlimited to spherical regions (the sphere pgcki
problem [13]), or to some particular regions relevant tdaiar
target applicationsg(g.[7], [8])- It remains a challenging open
problem as to whether one can find a general and systematic
approach determining the optimal alias-free samplingckest
for an arbitrary frequency support in multiple dimensidba.a
broader scale, alias-free sampling is mathematicallyvedgnt
to the lattice packing of a given domain, for which lots ofdstu

Shannon-Kotelnikov sampling—thées can be found in disciplines such as computational gegmet

and operational research. So far, most practical algosthm
oposed for densest lattice packiregd.[14]-[16]) approach
ﬁlge problem from a geometrical perspective. The primaristoo
employed are the theories from Minkowski’'s work [13], as
Il as various geometrical intuitions and heuristics wizd

or particular domains in lower dimensions.

Instead of adopting the usual geometrical viewpoint, we
ropose in this paper a Fourier analytical approach to the

overlap with the baseband, then we haveadias-free sam- problem of alias-free sampling.€. packing). Central to this

pling; consequently, the original signal can be reconstruct

ggproach is a novel condition linking the alias-free sampli

from its sampled version by applying an ideal interpolatioW'th the Fourier transform of the indicator function defined

filter whose passband is supported on the baseband.
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on the underlying frequency support (see Theorem 1). An
important feature of the proposed condition is that it optbes
door to purely analytical and computational solutions t@ ou
sampling lattice selection problem. Compared with geoynetr
based methods, the proposed analytical approach can be
potentially advantageous in situations when the undeglyin
frequency regions have complicated nonconvex shapes, or in
higher dimensions, where it is increasingly difficult to ake
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A conceptually similar idea of using the indicator functon
to study lattice tiling was proposed by Kolountzakis and
Lagarias [17], [18]. Our work can be viewed as an extension
of this early mathematical work to the more general lattice
packing case, with specific engineering applications imalig
sampling. Our extensions, however, provide fundamental ne
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results in the following directions. of the domainD, i.e, Ip(w) =1 1if w € D andlp(w) =0
First, the practical applicability of the proposed Fouden- otherwise.
dition depends on whether one can easily calculate the &ouri
transforms of the indicator functions. Therefore, we study pultidimensional Sampling on Lattices
the computation of these Fourier transforms in Section V. - : : . .
. . ; . In multidimensional multirate signal processing, the sam-
Using the divergence theorem, we derive simple closed—forrp . , : .
. T . pling operations are usually defined on lattices, each o€lwhi
expressions for situations when the frequency supporonsgi : .
i 7 an be generated by a¥ x N nonsingular matrixM as
are arbitrary polygonal and polyhedral domains in 2-D and CE

D (see Propositions 3 and 4), either convex or nonconvex. _The Apg def {(Mn :n ez} )
proposed results can also be generalized to higher dimeadsio ) ) _
cases involvingV-D polytopes. We denote byAj, the corresponding reciprocal lattice (a.k.a.

Next, we discuss the quantization of sampling lattices Rplar lattice), defined as
Section V. To systematically investigate all possible skmyp «  def -T, . N
geometries, we describe and employ the Hermite normal forms Ay ={M " L: L€ L) 3)
[19], [20] for integer matrices, which provide a completén the rest of the paper, when it is clear from the context what
characterization of quantized sampling lattices. We preseahe generating matrix is, we will drop the subscriptsAips
a new estimate for the total number of different quantizeehd A% ,, and useA and A* for simplicity.
lattices of a given density, which can be used to predict theFor anM-fold sampling, the input continuous signg(x)
size of the search space. and the output discrete signaln| are related bys[n] =
We demonstrate the proposed technigues in two possifleM n). Supposef(x) is bandlimited, and its frequency
signal processing applications. In Section VI, we presentregion of support is a bounded open g&tc RY. Then the
simple algorithm that can efficiently determine if a givemliscrete-time Fourier transform of the samplga], defined
polytope-shaped frequency partitioning allows for cetisam- asS(w) = >, .~ s[n] e 2™ «™ is supported in [9]-[11]
pling. This algorithm can be useful in the design of mul-
tidimensional multirate systems, when one wants to check S—m7T ( U (D—i—k)) _ (4)
whether a certain frequency partitioning can be implengknte
by a critically sampled i(e. nonredundant) filter bank. In
Section VII, we propose an algorithm that, when given
polytope-shaped frequency domain, can search for the apti
alias-free sampling lattices among all quantized lattiaes : . : T
given quantization scale. Several examples are given Msh%pplylng a linear mapping1 "~ .
the potential of the proposed algorithms. We conclude the
paper in Section VIII. B. Alias-Free Sampling and Critical Sampling
For appropriately chosen sampling lattices, the aliasing
[I. PRELIMINARIES components in (4) do not overlap with the baseband frequency
support D. In this important case, we can fully recover
the original continuous signaf(x) by applying an ideal
interpolation filter spectrally supported dn to the discrete
sampless[n].
Definition 1: We say a frequency suppdPtallows analias-
free M -fold sampling, if different shifted copies @ in (4)
the absolute value of the determinant of a mathik. The are disjoint,i.e,
Esuriertransform of a functioffi(w) defined orR" is defined DN(D+k)=0 forall ke A*\{0}. (5)

keA*

e obtained by first taking the union of the baseb@nhdnd

E words, the frequency suppastof the discrete samples can
all of its shifted copiesi(e. aliasing components), and then

Notation: Throughout the papety represents the dimen-
sion of the signals. Bold face italic letters represanby-N
matrices (upper case) and-by-1 vectors (lower case). We
denote by

|M| %' |det M|

) — —2mjmw g Furthermore, we sap can becritically sampledby M, if
f(@) RN (w)e @ @) in addition to the alias-free condition in (5), the union bét

wherez,w € R are the vectors of spatial and frequencyslh'ﬂed copies also covers the entire spectrue,

variables, respectivefyCalligraphic letters, such &, repre- U (D+k)= RY, up to a set of measure zefo (6)
sent bounded and open frequency domainRih with m(D) koA~

denoting the Lebesgue measure.(volume) of D. Given a
nonsingular matrixVM and a vectorr, we useM (D + T)

to represent the set of points of the for (w + 7) for

w € D. Finally, we denote byl p(w) the indicator function

The density of a sampling latticky, is defined apns =
1/|M]|, which is the number of samples retained per unit
volume. Note that for a given frequency suppBrtthere exist
infinitely many lattices that can achieve alias-free sangplor

Istrictly speaking, to obtain the spatial domain functiﬁ(m) from the D; thus, it is possible to reduce the sampling density, whilke s

frequency domain functionf(w), one should apply thdnverse Fourier €main alias-free, through a judicious choice of the samgpli
transform in (1). We choose to use tleeward Fourier transform here, mainly

for notational conveniences in later parts of this paperthidiaatically, the 2This technicality is due to the assumption that the frequemrgion of
two choices are equivalent up to a sign change. supportD is an open set.
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geometry. We call those alias-free sampling lattices ainie Proof: From the definition ofRp(w), its Fourier trans-

minimum sampling density the optimal sampling latticesr Odorm is }A%D(m) = [1p(x)|2. Applying the Poisson summation

main focus in this paper is to propose a Fourier analyticEdrmula (see Appendix A for a justification for the pointwise

condition and a corresponding computational procedure theguality), we have

can systematically search for the optimal sampling ladtice ~ ~

s gvenp P P S" Ro(k) = |M|Y" Bp(n) = M| Y [in(n)
Before proceeding, we make some further remarks on the *€A” nel nel

scope of this paper. First, we restrict our attention to the The overlapping termdp as defined in (7) can then be

scenario in which the continuous signals are sampled orcalculated as

single lattice. Consequently, the minimum sampling rate we o

pursue is the Nyquist rate, which is achieved by those &tic Ap.m = sz:* Bp(k) = Iip(0)

that can pack the frequency supp@tin the tightest way. © . ) 9)
We note that it is possible to go below the Nyquist rate if we = |M]| Z [1p(n)|” —m(D),

can sample the continuous signals with multiple channeds an neA

on multiple lattices (seeg.g, [21], [22]). This more general where in reaching the second equality we have also used the
sampling setup is left for future work. Second, in varioufact thatRp(0) = m(D). By applying Lemma 1, we are done.
Fourier imaging modalities (such as MRI), the measurements ]

we obtain are samples of the Fourier transform of someRemark:The “only if” direction of Theorem 1 can also
object. The goal, therefore, is to reconstruct the spatialain be formally established as the consequence of a standard
function from its Fourier samples, which is the exact dual aondition for orthogonal functions (see, for example, [R3,

the sampling setup considered in this paper. Thereforégif t132]), which states that a set of functiofig(w — k)},cx-
spatial support of the object is known, our results on optimare mutually orthogonal i.2(RY) if and only if

sampling lattices can be directly applied to this problem. —~
Ping y app P M| |f(+n)?=|f|7. for almost everyr. (10)
neA

In this section, we study the problems of alias-free sargpIiThe alias-free sampling condition defined in (5) means that

and critical sampling with Fourier techniques. The key msgﬂpg“’ },k)}kGA* consfitutes an orthogonal set qf fu_nct|ons
S ; . . o in L=(RY). Therefore, by applying the characterization (10)
vation is a link between the alias-free sampling conditiod a

. o ; . to 1p(w), we get the formula (8) of Theorem 1. A catch in
the Fourier transform of the indicator functidn (w) defined this derivation though is that (10) holds only falmostevery
on the frequency suppof.

x, whereas in Theorem 1 we want to be able to evaluate the
sum at a specific point = 0. We justify the validity of the
A. A Fourier Analytical Condition for Alias-Free Sampling pointwise equality in Appendix A.

As the first step to linking the alias-free sampling problem From Theorem 1, we can obtain an equivalent testing

with Fourier analysis, we consider the autocorrelatiorcfiom  condition for alias-free sampling as described below.
Proposition 1: A frequency regionD allows an M -fold

IIl. ALIAS-FREE SAMPLING USING FOURIER TECHNIQUES

Rp(w) = /]ID(T) Ip(T —w)dr, alias-free samplingf and only if
and define M| ) [Ip(m))?<m(D), forallr>0, (11)
Apm = > Ro(k). (7) neA e <r
REATMO) where||n|| ger max(|n1l,...,|nx]|) is the infinity norm.
Since Rp(w) measures the volume of intersection betw@&en Proof: The necessity of (11) follows immediately from

andD + w, i.e, Rp(w) = m(D N (D + w)), the quantity Theorem 1. For the sufficiency, assume (11) holds. Then the
Ap m defined above can be interpreted as the total volumeleft hand side of (8) is less than or equal to the right hand
overlapping regions between the original baseband sufporkide (just by letting- — +00). On the other hand, because by

and all its aliasing components in (4). constructiondp ps is always nonnegative, we can obtain from
Lemma 1:A frequency regiorD allows anM-fold alias- (9) that| M| ZneAﬁD(n)P > m(D), and thus the equality
free samplingf and only if Ap ar = 0. holds in (8). It then follows from Theorem 1 th@ allows
Proof: By construction, Rp(w) > 0 for all w; thus for an M-fold alias-free sampling. [ ]
Ap v = 0 if and only if the volume of intersectioRp (k) = Compared with theinfinite sum in Theorem 1, the new
0 for all k € A*\ {0}, which is the same as having the aliasecondition in Proposition 1 is often more useful for pradtica
free condition given in (5). B computational procedures. This is because, for any given
Theorem 1:A frequency regiorD allows anM-fold alias- » > 0, the condition (11) only involves dinite sum of
free samplingf and only if [Tp(x)|?, which can be easily computed and serves as a
~ necessary condition for alias-free sampling. We will come
M| Z“ll’(nﬂg =m(D), (8) back to this point in more details in Sections VI and VII.

nen As an immediate application of Proposition 1, we can get

wherelp(z) is the Fourier transform of p(w). the following well-known lower bound on sampling density,
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11
which is usually proved by geometrical arguments in the 5 fz ; 3(5’5)
literature. . ;
Corollary 1 (Lower bound on sampling densityf: D al-

lows anM -fold alias-free sampling, then the sampling density 5 5
pnr Satisfies . 6 5 W1

oM = agy = P) S AR N

Proof: From (11), we have (L1

(@

Fig. 1. (a) The ideal frequency partitioning of a three-ledigectional filter
bank. (b) The values of p () evaluated at integer points, wit® being the
dark region shown in (a). Black dots represent zero valuebkvanite dots
represent nonzero values.

% > [Ip(0)? =

and hence (12).

( /. np(w>dw)2 — m(D)2,

B. A Fourier Analytical Condition for Critical Sampling

Here we focus on the special case of critical sampling, andEvaluating 1p(x) at integer pointsn = (ni,n2) for
begin by mentioning, without proof, a standard result: 0 < n; < 12 and|ny| < 6, we show the results in Figure 1(b),

Lemma 2:A frequency supporP can be critically sampled where each dot represents an integer point, and black dots
by a sampling matrixM if and only if M is an alias-free indicate those locations wherép(ni,na) = 0. We can
sampling matrix forD with sampling densityt /|M| = m(D). observe that the zero set (black dots) contains, as a subset,

Combining Theorem 1 and Lemma 2, we can obtain @Mn : 0 < n; < 3, |ny| < 3} \ {0}, where M = diag(4,2)
simpler set of conditions for the special case of critica$ a diagonal matrix whose determinant is equal ton(D).
sampling as follows. Substitutingz; = 4ny, z2 = 2ny into (14), we can verify that

Proposition 2: A frequency supportD can be critically 1p(Mmn) = 1p(4n1,2ns) = 0 for all integer vectors: # 0.
sampled by a matrix\ if and only if Therefore, the condition (13) in Proposition 2 is satisfiaal
henceD can indeed be critically sampled by .

We can see from the above example that Proposition 2
provides a purely computational way to determine if a given
frequency support allows for critical sampling, and if yes,
what the sampling matrices are. However, to develop practic

R , ,  m(D) computational algorithms based on this result (as well as on
> lip(n)]* = [1p(0))* = ™M Proposition 1 for alias-free sampling), we must overcomeeth
neA issues as listed below.

and hence from Theorem IM is an alias-free sampling 1) As a prerequisite to using the Fourier conditions in (11)
matrix for D. Meanwhile, sincen(D) = —-, we can apply and (13), we must know the expression fas(z). This

(13)
Ip(n) =0 forall ne A\ {0}
Proof: Suppose (13) holds, it then follows that

[M]°

Lemma 2 to conclude tha is critically sampled byM . By
reversing the above line of reasoning, we can also show the
necessity of (13). ]

Remark:The result of Proposition 2 is previously known
in various disciplines. In approximation theory, the cdioai
(13) is often called the interpolation property, which iisfeed
by the Fourier transform of the indicator function defined on
any fundamental cell of a lattice (see, for example, [124]]2
The usefulness of this condition in the context of lattidiedi
was first pointed out by Kolountzakis and Lagarias [17] and 3)
applied to investigate the tiling of various high dimensibn
shapes [18].

Example 1:Figure 1(a) shows the ideal frequency partition-
ing of a three-level directional filter bank [25], [26], whic
divides the 2-D discrete spectrufn-, 1]% into 8 wedge-
shaped subbands. How do we verify that each subband can be
critically sampled, but without using geometriye( drawing
figures)? According to Proposition 2, for each subb@ndve
just need to calculatép(x), and try to find a matrixM such
that (13) holds. For instance, consider the subband marked a
the dark region in Figure 1(a). We can work out an expression
for 1p(z) as follows

2)

3

7T2.%'1(2$C2 — .’L‘l)

~ 1 —cos(mxa —

1 _ Q —
1p(z) = B cos(mxy — m1)

27T2,T1 (,TQ — .%'1)

can be a cumbersome task if we need to do the derivation
by hand for each giverD. We address this problem
in the next section by presenting simple closed-form
expressions foﬁp(:c) when D are arbitrary polygonal
and polyhedral domains.

To systematically and efficiently search for the optimal
sampling lattices, we study in Section V acomplete
andnonredundanenumeration of all possible sampling
geometries.

In practical implementations, we can only compute the
values of Ip(x) at a finite number of lattice points,
whereas the Fourier conditions in (11) and (13) in-
volve an infinite number of points. We present in Sec-
tion VII-B a quantitative analysis on the effect of the
approximation due to finite computation, for the case
of 2-D polygonal domains. The result of the analysis
is useful in determining how many points we need to
compute to achieve a given precision.

IV. THE FOURIER TRANSFORMS OFINDICATOR
FUNCTIONS

A. The Divergence Theorem

14 We consider the computation cﬁp(w) in this section.
- (14) Suppose the domaiP has a piecewise smooth boundary, and
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let F(w) = (Fi(w), F3(w),...,Fy(w)) be a continuously of K line segments, denoted b#;, Bs,...,Bx. We let
differentiable vector field defined oR. The divergence theo- t;, = (p,,, — py)/di be the unit tangent vector dB;,. We
rem states that apply (16) to get

/ div F(w) dw = F(w) - n, dS(w), (15) - j
’ " 126 = gl

M=

(x-ny) / e I Tw 4G (w)
k By,

Il
-

wherediv F(w) £ 32 | 25 is the divergence of (w),

) i=1" duw; . : K di/2
andoD is the boundary oD oriented by outward unit normal __J Z (x - nk)/ ' e—2mim (crttuv) g,
vectorsn,,. 2 ||ae]|? &= —di /2
In this work, we choose the vector-valued function to be . K sin(rdy @ - )
Fo(w) = gz e 2™ ®«, wherex # 0 is a fixed vector - Z (z ) —— = R g2mj e
27 ||| Tty
parameter. We compute k=1
N o5 . which is equivalent to (17) after replacirtg with its corre-
div Fa(w) =) I =amj Ty wnwn sponding expression |
— Ow; \ 27|z|]? '

Many applications deal with real-valued signals, for which
, N2 : the domains of frequency supports are always symmetric with
— e—27rjac»w Z i 6_277'7 T w o i i .
L |2 ’ respect to the origin. We can easily verify the following
=1 corollary, which employs the symmetry of the domain and
which is exactly the exponential term used in the Fouriealculateslp(x) using only half of the vertices.
transform. The divergence theorem (15) then leads to a fiarmu Corollary 2: Suppose the domaiP is a disjoint union of

of Randol [27], namely that a polygonD; and its symmetric copy—D,), i.e, D =D; U
N def . . —D; andD;N—D; = (). Meanwhile, supposP; hasK sides
Ip(z) = / e T dw = / div Fg(w) dw whose vertices are as in Proposition 3. Then fora 0,

D D

— .] —2Mjxw . ds 16 e 1 K

oz /61)6 (x-ny) dS(w),  (18)  § )= o 3 di (@ - ny)
for all z # 0. In other words, we can simplify the computation sinc (m b k:1_ )) ) ( o . ))
of 1p(x) from an integration on the entire voluni2 to one m Pet1 = Pr)) SMATE " Pret1 T Pre))
on the boundary surfacgD. whered, andn, are the length and outward unit normal vector

of the kth side, respectively.

B. Fourier Transforms of Indicator Functions on Polygonal Example 2:Let D be the wedge-shaped frequency support
Domains shown in Figure 2. It is a centrally symmetric domain, whose

. . L _ upper half is a triangle with verticeg, = (-1, 1) p, =
In various practical applications, the domains of frequemi pe 1 9 & = (=5.35) P2

) : —+ )T "andp, at the origin. In Example 1, we have shown
supports of the underlying signals can often be modeledras, ) Ps 9! xamp W v W

g 4’2 . 2N ; .
at least approximated by, polygons in 2-D, polyhedra in 3.[3" expression fot p(x) derived by hand. Here, we achieve the
and in general, polytopes ilV-D. For these types of domain

Same goal by applying Corollary 2. From the coordinates of
the boundaryD assumes a particularly simple shapey(the

'the vertices, we can calculate the length and unit normabvec
i -1 _ V5 - V2.
boundary of a polygon is just a finite union of line segments?;n each of the ;hree S|de§ d$1 _T47d2 - 4\’/213 _\/5 2
consequently, we can work out the integral in (16) and obtafd n = 0,1)%,ny = (—5_, ) ms = (=%, %)
closed-form expressions fdrp(z). To see this, we start with INSerting these parameters into (18) leads to

(18)

the foIIowing propositipn for the 2-D polygonal case. A diani oo o m(das —3a1) . m
result was first given in [28]. 7|jx||" Ip(x) = ST sl
Proposition 3: SupposeD is a polygon with K sides, 2wy +xy . m(2my —x1) . 2@y — 21
whose vertices, when traced clockwise, @gp,,...,Dk- 1 s 4 sine 4 (19)
Also, letpy d:efpl. Thenip(o) = m(D); and forx # 0, N 1+ 2 o m(xy — x2) . QP2
1n S11 .
- 2 2 0 2
1p(z) = % Z di, (- ny) After some manipulation, we can verify that (19) is equiwdle
27| (17) . PLrero
k=1 to the expression given in (14).

—2mjx-cy

sinc (@ - (P41 — 1)) € ;

wheresinc(z) def sin(rz)/(mz) is the normalized sinc func- C. Higher Dimensional Cases: Polyhedron and Polytope Do-

tion; dy = ||pys, — Py is the lengthp, is the outward unit Mains
normal vector, and, = (p, + p;,1)/2 is the center, of the  We can generalize the previous results to higher dimenkiona

kth side. R cases when the domainis a polyhedron in 3-D or a polytope
Proof: When z = 0, we have 1p(0) = in N-D. For example, whem is a polyhedron, its boundary
[1p(w)e ™%« dw = m(D). In what follows, we is a finite union of 2-D polygons, the integration on which has

consider the case when # 0. The boundaryyD consists been solved by Proposition 3. Thus, by combining (16) and
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matrix can be well-approximated by the quantized matrioes i
(21) wheng is large enough. Meanwhile, due to constraints in
hardware precision, the sampling locations in practicsieys

are often quantized anyway. As we will see in the discussions
below, the main advantage of considering this quantizedainod
is to reduce the search space of sampling lattices to a finite
set.

B. The Hermite Normal Form and Characterization of Lattices

Fig. 2. A centrally symmetric frequency domaif, whose vertices are Given a frequency suppof®, we know from Cor0||ary 1
pr=(-33)" po=(-1 37 andp; = 0. i ; i i
22 42 that all suitable matrice84 for alias-free sampling db must
have| M| < 1/m(D). Correspondingly, the integer matri®

(17) in Proposition 3, we can get the following result, whos® (21) must satisfy

proof is omitted. v
Proposition 4: SupposeD is a polyhedron withK" facets. 1P| € {1’ 2,350, {m(p) ’ (22)

The kth facet is an Lj-sided polygon, whose vertices, . .
when traced clockwise, are denoted pk, ..., p% . Then where |«] is the largest integer less than or equal to a real
’ PE2r o Bl number «.. Similarly, for critical sampling, we know from

1p(0) = m(D); and forz # 0, Proposition 2 that

1 & Tone =9 (23)

~ — . k = .

1p(x) 2722 ; ]2 = | - nx|? ; (z - vy) (20) m(D)

) L L Although infinitely many integer matrices satisfy (22) oB)2
sinc (z - (P4 — Pi)) e we only need to check a finite number of them, as there

wheren,, is the outward unit normal vector of thgh facet, €xist only a finite number ofjeometrically distinctiattices

vf = ny x (pk,, —pk), andef = (pf +pk, ,)/2 is the center generated by these matrices [20]. To see this, the first step o

of the /th side on thekth facet. our discussions is the following well-known result (seeg,

Remark:n general, the boundary facets of ArD polytope [4]):

are just a finite union of N — 1)-D polytopes; hence, one Proposition 5: A frequency supporD allows anM -fold

can Ca|cu|atéﬁp(m) on arbitraryN-D p0|yt0pe domains by alias-free Sampling, if and Only if it allows aMQ-fO|d alias-

recursively applying (16) and the previous results for théree sampling, whereVf, = M, U andU is an arbitrary

(N —1)-D case. Due to space limitations, we omit here furthéfimodular matrix ice. an integer matrix withU| = 1). The

details of this generalization. same is true for critical sampling.

The above statements can be easily verified by noting
that the matricesMf; and MU always generate the same
, , . , sampling lattices. To apply this result, we define the foltayv
Another important ingredient of the proposed Fourier Corb'lnary relation between two matrices: we sA§, ~ M. if

d?tions in Section 11l is_ the_ sampling Iattice._ln this smtj We aAr. ~ M, U for some unimodular matri&/. We can verify
discuss the characterization and enumeration of all (@Mt y,5¢ A7, . A7, is an equivalence relation, and therefore, the
sampling lattices, and the results will be used to define thgeqhonding equivalence classes form a partition oféhefs
search space of the computational procedures proposee indfi matrices whose determinants have the same absolute.valu
following sections. Proposition 5 implies that, for each equivalence class,use |

need to pick a representative matrix from that class, andiche
A. Quantization of Lattices if it forms an alias-free sampling (or critical sampling)hd

In principle, the sampling lattices can be generated by aH'F/SU“ then carric_—zs over to all members iq that equivalt_ance
nonsingular matrixM with real-valuedentries. In this paper, ¢fass. The following theorem [19], [20] provides a convenie

however, we focus our attention to matrices of the followin§'@S$ Of representative matrices.

. k
—2mjx-c,
)

V. ENUMERATION OF QUANTIZED SAMPLING LATTICES

form: Theorem 2 (Hermite normal form)}=or every matrix of the
M — P 21) form M, = P/q with P being an integer matrix, there is a
q’ unique matrix My = H/q, such thatM; ~ M, and that

where P is an integer-valuedmatrix, andg > 1 is a ¥ = [hijli<ij<n is an integer matrix having the Hermite
grmal form, which means

pre-determined quantization scale. In other words, we hal!
quantized the entries d¥1 to bep; j/q, with p; ; € Z. 1) H is upper triangular;

Notice that, by setting the quantization scaje = 1, 2) hyy>0and0 < h;; <h;forl<i<j<N.
the above model includes discrete signal processing as dt follows from Theorem 2 that we only need to consider
special case, where we only use integer sampling lattiaes. Bampling matrices of the forndMd = H/q, where H is a
continuous signal processing, the quantization in (21}iils sHermite normal matrix. Such matrices provide a complete and
a reasonable simplification, since any real-valued samplinonredundant enumeration of all possible sampling lattite
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guantization level. The following procedure, first introducedto 0; however the corresponding constant must necessarily be

to the sampling literature by Cortelazzo and Manduchi [20facreased towards infinity.

can be used to list the generating matrices of all quantizedProposition 6 can be used to predict the size of the search

sampling latticesi(e. sublattices of% ZN) at a given density. space of sampling matrices. LE}; (¢) denote the total number
Procedure 1 (Enumeration of Hermite normal matrices): of Hermite normal matrices satisfying (22); then it follows

Let the determinand be a positive integer. from (24) that

1) Form a setV — {(dl,dg,...,dN):Hf:[:l dnzé}, N\ N-1
whered,,(1 < n < N) are positive integers. Note that {'N\9) ~ m(D)
V' is always a finite set. )

2) For each vectofd;,ds,...,dy) from V, put the corre- =0 (qN ) . (25)
sponding elementsd;, ds, ...,dy at the main diagonal ) o
of an N-by-N matrix. Select the off-diagonal elements We can see thaky(q) grows rapidly as the quantization
of the matrix according to the rule that ; = 0 for scale ¢ increases. However, since the search for optimal
1<j<i<Nand0<h;<h;forl< i< j < N. sampling lattices is usually a design optimization problem
There are]:[Nl JdN—i different choices. N that needs to be carried out only once for each frequency

For example, whedV — 2 and the determinant is equal tc)support shapéein (q) can still be a feasible number for off-line

i .~ . computation, especially when we work in lower dimensions
3, there are a total of four such Hermite normal matrices: . o
(N = 2,3) and choose reasonably sized quantization scales.

( 10 > < 30 ) ( 31 > and ( 3 2 > Moreover, as we will see later, not all candidate sampling

0o 3)>\ 0 1)\ 0 1) 0 1) matrices in the search space require the same amount of effor
to check for their suitability for alias-free sampling. brct, the

C. Size of the Search Space majority of the candidate sampling matrices can be elineithat

airly quickly with only a small amount of computation. We

In the following sections, we will discuss algorithms th ave the details to Section VII.

examine all possible Hermite normal matrices satisfying) (2
and test each of them for alias-free sampling or critical
sampling. It is therefore important to estimate the sizehef t V! APPLICATIONS INNONREDUNDANT FILTER BANKS
search space, which depends on the number of distinct HermitWe dedicate the remaining part of this paper to two appli-
normal matrices. In what follows, we udéy(d) to denote cations of the proposed theoretical results. In this seaciie
the total number ofN-by-N Hermite normal matrices with focus on the special case of critical sampling, and desdtsbe
determinant equal to a positive integer application in the design of multidimensional criticallgrs-

In 2-D, H,(4) equals the “divisor function” ofs (often pled filter banks. We then deal with the more general problem
written aso(4) [29]), which is defined as the sum of allof identifying optimal sampling lattices in Section VII.
positive divisors ofs. To see this, we observe that all 2-by-

2 Hermite matrices have the for g z , Wherea, b are A. Frequency Partitioning of Critically Sampled Filter Bles

positive integers withub = 6 and0 < ¢ < a. That is, botha Consider a general multidimensional filter bank, where each
and b are divisors ofs. Given the divisora, we determinegy channel contains a subband filter and a sampling operator. As
from b = m/a, and observe that the number of choicesfor an important step in filter bank design, we need to specify
equals exactly:. Summing over all possible divisorsgives the ideal passband support of each subband filter, all oftwhic
the total number of Hermite matrices 3,5 a = o(9). For form a partitioning of the frequency spectrum. For example,
large d, it can be shown that the growth rate ®fs) (i.e.the as shown in Figure 1(a), a 2-D directional filter bank pantig
total number of 2-by-2 Hermite matrices of determinénts the spectrum into wedge-shaped subbands.
asymptotic toe” §Inln & [29], where~ ~ 0.577 is the Euler ~ Not every possible frequency partitioning can be used for
constant. filter bank implementation though. In particular, if we want
For the generaN-D case, we obtain the following estimate40 have a nonredundant filter bank, then the ideal passband
on the total number of Hermite normal matrices, whose prosfipport of each subband filter must be critically sampled by

is given in Appendix B. the sampling matrix in that channel. Consequently, wheneve
Proposition 6: For N > 2, we have given a possible frequency partitioning, we must first perfo
Hy (9) a “reality check’_’ of seeing wh(_ather thg above condition ig,me
1< (&71 < 22 60001, (24) before proceeding to actual filter design.

The critical sampling condition is commonly verified ge-
Remark:The terms®-%°! grows very slowly — it is less than ometrically {.e. by drawing figures). Although intuitive and

10°1 ~ 1.259 for § < 10!°° — and can thus be treated as atraightforward, this geometrical approach becomes cwmbe

small constant from a practical point of view. Consequentlgome when the shape of the passband support is complicated,

the estimates in (24) imply thali () is essentially equal

to Oy 5VN-1 for some bounded quantit@;. Meanwhile, the ) SIn ‘praclti_ce,,’ suitap!e passband supports must also satisfyes;dditional

constant facto?2 and the exponent.00l in (24) are not the permissibility” conditions [30], which take into accourbe nonideal fre-

) - ) quency responses of realistic filters. These further cmmditare beyond the
only choices. The exponent can be chosen arbitrarily clog@pe of this paper.
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instead of havingg wedge-shaped subbands as in Figure 1(a),
this new directional filter bank (DFB) generatésubbands.
Applying the algorithm in Procedure 2, we can easily verify
that this new frequency decomposition can also be criticall
sampled. The corresponding sampling matrices, denoted by
M, for the kth subband, are

@) (b)

Fig. 3. The ideal frequency partitioning of several filtenks. (a) An alter-
native directional filter bank which decomposes the frequesell (— 1, 512 and

6 3
MO_MI_M2_<O 1)

into 6 subbands. (b) A directional multiresolution frequencytigianing. (c) Ma—= Mi—= M- — 2 1
A 3-D directional frequency decomposition with pyramidapkd passband 3= 4= 57— 0 3 ’
supports.

Example 4:We show in Figure 3(b) a directional and

multiresolution decomposition of the 2-D frequency spaetr
or when we work in 3-D and higher dimensional cases whe@l], [32]. Applying Procedure 2 confirms that such a fre-
it is difficult to invoke geometrical intuition. Applying th quency partitioning can be critically sampled as well. The
result of Proposition 2 and generalizing the ideas presentampling matrices for two representative subbands (marked
in Example 1, we propose in the following a computationa@s dark regions in the figure) are
procedure, which can systematically check and determiae th 40 3 4
critical sampling matrices of a given polytope region. Neti M, = ( 0 4 ) and M, = ( 0 4 ) .
that the algorithm only searches among integer matrices,
since the filter banks considered here operate on disdneée-t Example 5:Figure 3(c) shows an extension of the original

signals. 2-D DFB to the 3-D case [33], where the ideal passbands of the
Procedure 2 (Critical Sampling)Let D be a given componentfilters are rectangular-based pyramids radiatim
polytope-shaped frequency support region. from the origin at different orientations and tiling the ieat

1) Calculated = 1/m(D). From (13), any matrixM that frequency space. Unlike the original 2-D DFB, which is a
can critically-sampleD must satisfy|M| = 4. If 4 is nonredundant filter bank, the 3-D DFB constructed in [33] is

not an integer, then stop the procedure, since in this c&¥® oversampled filter bank. A_ natgral questior_1 the_n becomes:
it is impossible forD to be critically sampled by any can the 3-D frequency partitioning shown in Figure 3(c)
integer matrix be critically sampled,.e, allow for a nonredundant filter

2) According to the specification @b, construct the ex- bank implementation? Applying Procedure 2, we find that the
plicit formula for ip(:c) by using the results in Sec. answer is negative; in other words, redundancy is unavtedab

tion IV. for a 3-D DFB.
3) Apply Procedure 1 to construct a list of all Hermite

normal matrices with determinant equal&o B. Critical Sampling of General Cone-Shaped Frequency Re-
4) For every matrixM in the above list, test the following gions in Higher Dimensions

condition

The result in Example 5 can be generalized to higher
Tp(Mn) = 0 for all n € ZV \ {0} with ||n]w <, dimensions, and to cases where the subbands take different
26) directional shapes. As an application of the Fourier caomalit
in Proposition 2, we show here a much more general statement:
f is impossible to implement any cone-shaped frequency
there is no such matrix, the® cannot be critically partitioning by a nonredundant filter bank, except for thB 2-
case. Though this result seems to be expected [34] in the filte

sampled by any integer matrix. . L .
) : ._bank community, to our knowledge, the following is the first
To be clear, the expression (26) is a necessary Cond't'ﬁgorous proof in the literature

for D to be critically sampled byM. It is not sufficient
since we only check for integer points within a finite radiug
r, and so in principle, even ifM satisfies (26) for all
[n]lee < 7, it might happen thaflp(Mmn) # 0 for some
n with ||n|| > r. However, by choosing sufficiently D = {(w1,...,wn):a <|wy|<b, (wi,...,wN_1) € wy B}.
large, we can gain confidence in the validity of the original (27)
infinite condition (13) as required in Proposition 2. We leavGeometrically,D takes the form of a two-sided cone RYY,
the quantitative analysis of this approximation due to dinittruncated by hyperplands)y| = a and |wy| = b, where
computation to Section VII. In the following examples, wé < a < b. The “base” region3 in (27) is the intersection
chooser = 10000, and assume that the issue of numericéletween the cone and the hyperplane = 1.
precision in evaluating the equality (26) is negligible. The formulation in (27) is flexible enough to characterize,
Example 3:Figure 3(a) presents an alternative way to deip to a rotation, any directional subband shown in Figure 3.
compose the frequency spectrum into directional subbané&®sr example, to describe subbafdn Figure 3(a), we can

wherer is a large positive integer.
5) Present all the matrices in the list that satisfy (26).

Since we will be discussing generdl-D cases, it is neces-
ary to introduce some algebraic notations. We considex ide
subband supports of the following “truncated-cone” shape:
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seta = 0,b = % and let the basé3 = [—1,—%]; by identifying optimal alias-free sampling lattices for a giv
choosinga = %, b= %, andB = [—%, %], we obtain subband- frequency support. Based on the Fourier condition predente

1 in Figure 3(b); similarly, the 3-D pyramid-shaped subbanid Proposition 1, we propose the following algorithm.
(1,1) in Figure 3(c) can be presented by= 0,b = 1, and Procedure 3 (Optimal alias-free sampling latticed)et D
B = [—3,0]%. However, the class of frequency shapes thae a polytope-shaped frequency support region, @adixed
can be described by (27) is far beyond those mentioned abayeantization scale.

since the formulation (27) allows for arbitrary configuoatiof 1) Since all suitable sampling lattices must satisfy (22),

the cross sections heighisandb (not necessarily the dyadic we start with the largest possible determindrd, set
decomposition as in Figure 3(b)) and arbitrary shape for the 5 — LQN/m(D)J-
baseB (not necessarily lines or squares). N 2) Use Procedure 1 to construct a list of all Hermite normal
Lemma 3:If a frequency supporD can be critically sam- matrices with determinant equal o
pled by aninteger matrix M, then 3) For every Hermite normal matri#l in the above list,
1p(|M|n) =0, forall n ez \{0}. (28) let M = H /q and do the following:

Proof: We just need to show that, for any integer matrix a) Run a sequence of tests

M, the vector|M|n belongs to the latticeA generated |M| Z 1p(Mn)> <m(D), (30)
by M. Once we have established this claim, then (28) be- N
comes a natural consequence of (13) in Proposition 2. By

nELN ||nfloo<r

definition, verifying |M|n € A is equivalent to checking where the integer-valued radiusncreases from
that m = M '(|M|n) is an integer vector. By writing t0 rmax. Note thatry, represents the maximum
M~ = adj(M)/|M]|, where ad{ M) is the adjugate matrix searph radius, whose value will be determined in
of M, we getm = adj(M)n. Since both adjM) andn Section VII-B.
are integer-valuedy is indeed an integer vector. [ ] b) If condition (30) holds for all- up t0 71nax, then
Theorem 3:For arbitrary choice 06 < a < b and the base record the current matrid{ as a suitable sampling
shapeB, the frequency domain suppdtgiven in (27) cannot matrix; otherW|se, proceed to the next Herm|te
be critically sampled by any integer matrix, except for thB 2 normal matrix as soon as we reach a radiuat
case. which (30) fails.

Proof: We have already established the positive result4) If there exist previously recorded suitable sampling ma-
for 2-D in Examples 1, 3, and 4, where several 2-D cone- trices, present all these matrices and stop the procedure.
shaped regions have been shown to allow for critical samgplin Otherwise, seb < § — 1.

Next, we show the negative result in higher dimensionalgase 5) If 6 > 1, then return to Step 2); otherwise, stop the

by using contradiction. Suppose fé¥ > 3, and for some procedure, in which case the frequency regidrdoes
particular choices of) < a < b and B, the corresponding not allow alias-free sampling by any quantized matrices
frequency regiorD in (27) can be critically sampled by an at the given quantization scale

integer matrixM. It follows from (28) in Lemma 3 that In practical implementations, the computational efficienc

15(0,...,0,|M|n) =0, forallneZ\ {0}. (29) of the above algorithm can be improved in the following
two ways. First, sincelp(w) is a real-valued function, we
A have|lp(x)| = |1p(—=)|. Using this symmetry, we can save
1p(0,...,0,2) about half of the computations in checking the conditions in
omj s (30). Second, we can see that most of the running time of
:/ dwy (e / 1 dw . "dwN—1> the above algorithm is spent on evaluatifig>(Mn)|? for
a<|wn|< wnB . . L.
various choices off andn. Therefore, to reduce repetitive

From the definition ofD, we have

:/ e 2T m(w B) dw computations, we can pre-calculate and save the values of
a<|w|<b |1p(n/q)|? for all integer vectors: within a given radius-

— / e 29y |N =1 (B) at the beginning of the.algorithm. The radiysis determiqed
a<|w|<b by the amount of available computer memory. Later in the

b N1 algorithm, only whenMn goes outside of the pre-calculated
= 2m(3)/ w cos(2mz w) dw. range, do we need to compytep (Mn)|?; otherwise we can

Using the above formula and after a change of variable, W%St directly pull out the corresponding values from theeshv

. array.
can rewrite (29) asf;:‘%f wN=lcos(nw)dw = 0, for all 4

n € Z\ {0}, which is impossible whe®v > 3 by Appendix C. o o o
m B. The Precision of the Approximation due to Finite Compu-

tation
VII. FINDING OPTIMAL ALIAS-FREE SAMPLING

In the above procedure, we can only check condition (30)
LATTICES

for a finite number of radii, ranging from1 to ry.x. IN

A. Algorithm contrast, the original condition (11) in Proposition 1 regs
In this section, we extend Procedure 2 in the previousto go to infinity. Therefore, our algorithm is only evaluatia
section for critical sampling to the more general case ofcessary condition for alias-free sampling. Intuitivéipugh,
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by using a larger.,.x, We should gain more confidence in the A potential problem in choosing a smallto achieve high
validity of the original infinite condition (11). precision is that, sincey,., is inversely proportional ta,

To quantify this intuition, we recall that the termdp as the amount of computations might be dramatically increased
defined in (7) represents the total volume of overlappirfgprtunately, this scenario will not happen, as most carndida
regions betwee® and all its aliasing components. From (9)sampling matrices can be quickly eliminated well before the
we can write radiusr in (30) reaches ... To see this, we rewrite (32) as

- (D, M)
App=|1M| 3 [Ip(Mn)f*—m(D) Alr) = Apar = Aa(r) 2 dpar = =
n€LN,nflo<r R For a matrix that does cause aliasing, we hayeas > 0; in
+IM| Y [Ap(Mn)]* (31) this caseA;(r) > 0 (i.e. the condition (30) fails) as soon as
neZN ||n|o>r

= Ai(r) + As(r), (32) r>re €e(D, M)/Ap nr.

where A, (r) and As(r) represent the first and second termés shown in the following numerical experiments, for the

in the right side of (31), respectively majority of the sampling matrices, the corresponding dtit-o
When the frequenc;} domaif® is' a 2-D polygon, the radiusr. is typically much smaller than the required maximum

following proposition provides an upper bound for the setor?eamh radiuSmas.

term As(r). Note that the techniques used in the proof can be

generalized and lead to similar results for cases wilés an C. Examples

N-D polytope (_e.g_.a_polyhedron).We omit this generalization \ys test the proposed algorithm in Procedure 3 on a set

due to space limitations. ) . of four different frequency support regions shown in Fig-
P_roposmon 7:Let D be a _polygon withK" sides, whose |, ¢ 4(a)—(d), including two convex polygoms (a 28-sided

vertlcedz: when traced clockwise, ag, p,, . .., px. Also, let regular polygon, approximating a circle) arfd, and two

Pk 41 = p;- Forany nonsingular matrif and radius- > 1, nponconvex polygon®; and D,. For each region, we apply

we have the algorithm to search for the corresponding optimal samgpl

o = 2 lattices. In our experiment, we choose the quantizatiotesca

Az(r) = [M] nez22n: >T|11D(Mn)| to beg = 50, and set the precision threshaidn (35) to be

0.005.
3K(1+ ﬁ)Q a di (M) 1 4o (M) /32 2 Figures 4(e)—(h) demonstrate the densest frequency pack-
Am2(r— 1) ; | M| ( +mdp(M)/ ) ’ ings achieved by our algorithm. We measure the quality of
(33) the results in terms of the sampling efficiency, defined as
. def
whered;, (M) &' | M” (p, ., — p,,)| is the length of the:th efficiency = |M|m(D) x 100%,
side of the warped pongoMTD. where M is the obtained sampling matrix. Note that a
Proof: See Appendix D. B sampling efficiency of100% corresponds to the case of

When r is sufficiently large, the inequality critical sampling. The highest sampling efficiencies acbie
in (33) can be well approximated byAs(r) < for D;, Dy, Ds, and D, are 90.66%, 92.24%, 89.94%, and
¢(D,M)/r, where the constant ¢(D, M) &f 86.81%, respectively. Note that the obtained sampling density
3K S de(M) (1+ 7rdk(M)/\/§)2 /|IM|. Now for forD; (90.66%) is fairly close tor/v/12 &~ 90.69%, which is
any sampling matrixM that satisfies (30) for radii up to known to be the highest packing density of circles, achieved

Tmax,» W& haveA; (ryax) < 0, and hence it follows from (32) by a hexagonal (*honeycomb”) arrangement.

that The algorithm is implemented in C++, and the running time
Ap s < (D, M) (34) ranges from69 seconds (forDs) to 355 seconds (forDs)
’ T'max on a computer with 2.2 GHz CPU. We observe that the
By increasing the maximum search ram){, we can reduce algorithm Spends Only a small fraction of the total running
the area of overlapping so that time to eliminate all unsuitable matrices and reach thenugti
sampling lattices. Afterwards, however, the remainingarij
Ap,m <em(D) for an arbitrarys > 0. (35) of the running time is actually spent on verifying that the

The numbet can be used to control the desired reCisiOobtained matrices indeed provide alias-free sampling iwith
P e given precision range. To explain this interesting ,fact

of our algorithm. After fixinge, we should chooder,,., = . "
o(D, M)/ (s m(D)). In this case, although we can only test e recall that the proposed algorithm checks condition (30)

necessary condition for alias-free sampling in Procedutke3 against a large number of sampling matrices (with decrgasin

L . ; densities), until it finds the first sampling matrix for which
amount of aliasingdp_as of the obtained matrices can always(go) holds for all radii up tor Let N denote the total
be kept within the desired precision range. P "Omas. m

number of sampling matrices checked by the algorithm. For
4By doing this, we will have different maximum search radiysax for EVEry matr!x el'm'nate_d in the pl‘(._)CGSS, there is a corredipgn
different M, asc(D, M) is a function of M. cut-off radiusr at which (30) fails. We denote by (r) the
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TABLE |
SOME KEY STATISTICS GATHERED IN THE EXPERIMENT

Frequency Regionl N, rmax | P(1) P2 PB) P4 PG | 0 P@w)
Dy 11652660 2807 | 94.79% 3.28% 0.91% 0.38%  0.20% 99.88%
Do 7642267 2512 | 96.30% 2.68% 0.59% 0.20% 0.09% 99.97%
D3 35911314 5666 | 96.34% 2.99% 0.36% 0.14%  0.06% 99.98%
Dy 25302982 4231 | 91.75% 6.41% 1.02% 0.33% 0.19% 99.93%
0.5 0.5

10. Note that the smaller the cut-off radius is, the less time it

0.29 0.29 takes the algorithm to verify condition (30). Fer= 1 (the
most likely case as seen from Table 1), the algorithm simply
° ° needs to compute the values|tf,(Mn)|? at four points to

eliminate a matrix.

s 0z 0 0 os s om0 0% 0s D. Fourier Analytical versus Geometrical Approach: A Brief
@ D1 (b) D2 Comment
* o8 The proposed algorithm described in Procedure 3 differs
02 from the standard geometrical approach to finding optimal
alias-free sampling lattices. The latter often builds uploa
0 following argument [13]: one can verify that the alias-free
o sampling condition in (5) is equivalent to requiring
A*N(D-D) ={0}, (36)
095 25 0 025 05
(d) Dy whereD —D & {w—7 :for all w, T € D} is the Minkowski
N . sum of D and —D. When?D is a polytope, the corresponding
] Minkowski sumD — D is also a polytope, whose bounding
ogf ) ; hyperplanes can be calculated from thoseTof{35]. If we

further assum® — D is convex (and hence can be specified by
a set of linear inequalities), then for each candidate sagpl

o ) ] matrix M, the condition (36) can be readily checked by

) evaluating a system of linear inequalities for a finite numbe

14565 0 o5 1o o w5 0 05 10 of points in A*. The task becomes more difficult, however,
(f) efficiency =92.24% when D — D is nonconvex, in which case one has to first
N decompose it into a union of convex subregions. As a potentia

advantage, the proposed Fourier analytical approach mypur
computational, and in particular, does not depend on the
convexity of the domairD.

In terms of computational efficiency, the experiments in
Section VII-C suggest that the proposed algorithm can bg ver
L f . . efficient in eliminating most of the candidate samplingitzis
4565 o 08 10 Mo wE 5 o5 10 (by only evaluating the Fourier transforms at four points),

(9) efficiency =89.94% (h) efficiency =86.81% but needs to spend more time testing those lattices that are
Fig. 4. Top two rows: Four frequency support regions usediineaperiment. close to b?'”g alias-free. Consequently, the Fou_”er dicaly
Bottom two rows: The tightest frequency packing obtainedtisy proposed approach is likely to be faster than the geometrical apgroac
algorithm. The basebands (drawn in thick lines) are showetteer with their for most of the candidate lattices, but will be slower than
aliasing copies (drawn in thin fines). the latter in the remaining cases. It is therefore promising
from a computational point of view, to develop a “hybrid”
algorithm—utilizing both the proposed Fourier conditiamda
relative percentage (with respect 16,,) of those matrices the geometrical condition in (36)—for finding optimal sam-

-0.5

whose cut-off radius is equal to(r = 1,2,3,...). pling lattices.
Table | summarizes the values ¥, rmax, andP(r) (r =
1...5) for the four frequency shapes tested in our experiment. VIII. CONCLUSIONS ANDFUTURE WORK

We can see that, although bofti,, and ., can be quite
large, the majority of the tested matrices can be eliminbied
using a fairly small radius. In the case D%, 96.30% of the
tested matrices can be e“mmateq t_’y using only L, and  sThese points are. = (1,0),(1,1),(0,1), (=1, 1). The remaining points
99.97% of the matrices can be eliminated by a radius up t@n be inferred by symmetry sin¢ép(Mn)| = [1p(—Mn)).

The main contribution of this paper is the Fourier analytica
condition presented in Theorem 1. By linking the alias-free
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sampling of a given frequency support region with the Fourief R). Similarly we may assume is supported in a cube
transform of the indicator function, this simple but powrf m + C, for somem < Z". Hence
result provides a versatile computational tool in the deéoc
optimal sampling lattices. > R(k) = / f(r)g(r —£+m)"dr,
The indicator function plays a pivotal role in this work; kezN £+Co
however, it is not the only choice. In fact, we can verify ttf#  since the support cubes gf(r) and g(+ — k) are disjoint

Fourier condition in Theorem 1 still holds if we replate(w) except whenk = £ — m. Now changing variable with- —
with any square-integrable functiof(w) that is positive and + 4 ¢ yields:

supported onD, and correspondingly, replace.(D) with
| f(w)]|2-. This generalization leads to many possible lines of Z R(k) = f(r+2)g(t+m) dr. (39)
research. For example, it is possible to improve computatio keZN Co

efficiency by using a funptlogf(w) that has smooth trans't'onApplying the Plancherel theorem for Fourier series, we have
at the boundary ofD, since the smoothness will translate

into faster decay (compared witilp(xz)|) in the spatial ny T m) dr = * 40
domain. Second, the spectral contents of practical sigarals Co S+ )T Z enlf)enla). (40)

unlikely to be uniformly distributed on the frequency suppo . - . _
D. Therefore, an interesting class of research would choos¥/3ere the Fourier coefficients on the right-hand side are
function f(w) that is adapted to the power spectral density 6k (f) = Jo, f(T + £)e > ™Tdr = f(n), and similarly
the signals. This would potentially allow us to have a more=(9) = g(n). Substituting these identities into (40) gives
sensible criterion in choosing the optimal sampling lasic that

nezN

> Rk)= Y fn)gn)* (41)
APPENDIX wet nezt
as desired.
So far we have proved (37) for the case whai is
A. The Poisson Summation Formula an identity matrix. For generalVl, we define f(w) =

The Poisson summation formula (PSF) or “lattice sampIiH | V2H(M T w) and g(w) = |M]| V2g(M ™" w). Ap-
formula” relates the infinite summation of a function ovePY'N9 (41) to f and g th_en proves the gene_zral case of the
a lattice with a summation of the Fourier transform of thd'€orem, after some straightforward calculations. u
function over the dual lattice. In this paper, we need the
following incarnation of the PSF. B. The Number of Hermite Normal Matrices with a Given

Theorem 4:Suppose functiong'(w), g(w) € L?*(RY) are Determinant

supported on a bounded dom??g i.e, suppf(w) C D and e first state the following result about the total number of

suppg(w) C D, and letR(w) = [pn f(T)9(T — w)*d7. Hermite normal matrices, whose proof can be found in [19,
Then for all nonsingular matrice®Z, pp.19-21].
~ Lemma 4:Let Hy () be the number ofV-by-N Hermite
sz: R(k) = |M]| ZAf(n)g(n) ’ (37)  normal matrices with determinagt If § = pv, for coprime
EA* ne

w andv, then Hy(uv) = Hy(p) Hy(v). Furthermore, if
whereA = {Mm :m € ZN} andA* = {M~T¢: ¢ zN}. =" = aprime, then
Remark:A difficulty in directly applying the PSF to show N=1_jii
(37) is that the standard versions of the PSF (such as given Hy (%) =
in [36, pp. 250-257]) require the Fourier transform to decay i=1
sufficiently fast. In particular, for our case we would need  Note that we can factorize any integér> 2 into § =
|f(m)§(m)| <A1+ ”w”)fos (38) ]'[;.]:1 wfj, wherery, ma, ..., 7y are di_s_tinq prime factors a_md
the exponents:y, ko, ..., k; are positive integers. Applying
for someA > 0 ande > 0. The condition (38) need notthe above result, we havHy () = szlHN(wfj), where
be satisfied in multidimensional case¥ ¢ 2) in our work, each term can be calculated by (42). We can see that the
because we takg(w) = g(w) = 1p(w) and the discontinuity formula for the exact value offx(§) depends on the prime
of this indicator function can lead to slow decay of its Feuri factorization of §. It is therefore often simpler and more
transform. convenient to use the estimates given in Proposition 6. To
We provide a direct proof of Theorem 4 that circumventgrove that proposition, we establish its lower bound andeupp
the assumption (38). bounds in the following two propositions.
Proof: First assuméV! is the identity matrix. Denote by  Proposition 8: Hy (1) = 1, andHy (6) > ‘55:11 for§ > 2,
Co the unit cube[—%, %]N. We may suppos¢ is supported where the equality is achieved whéris a prime number.
in a cube of the forn? + C, for some integer vectof ¢ Z", Proof: For§ > 2 and a giverk, 1 < k < N, we consider
because the origingf can be written as a finite linear com-the following class of integer matriceBll = [h; ;], whose
bination of functions supported in such cubes (notfhfpas entries are all zeros except for those on the diagonal line,
bounded support and thgtappears linearly in the definitionwherehy, , = 6 andh,; = 1 for i # k, and those on théth

(42)
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row, where0 < hy; < ¢ for k < j < N. By construction, Substituting these numbers into (44) yields the desiredlties
we can easily verify that these matrices are all in the Hermit ]
normal form (as specified in Theorem 2) and with determinant

5. Meanwhile, there are a total 6f—* of such matrices. By

varying k from 1 to N, we getHy(6) > 6V-1 + V-2 + C. ALemma Used in the Proof of Theorem 3

_ N N :
..+ 0+1 = %= Furthermore, when is prime, putting | gmma 5:For arbitrarily choserd < a <bande > 1,

 in one of the diagonal elements aihdn all other diagonal there must exist some € Z\ {0} such thatf t€ cos(nt) dt #
elements is the only way for the determinant of a Hermn§

normal matrix to equab. Therefore, the equality is achieved
in this case.
Proposition 9: As an upper bound, we havB y(d) <

Proof: We show this by contradiction. Suppose there is a
particular set of parametefs< a < b andc¢ > 1 for which

292 §N—l+0.001. b
Proof: For a prime numbetr, we have from (42) that / t“cos(nt)dt =0, forallneZ\{0}.  (48)
N-1 ki 1 . ) . :
Hy(m%) < H . = (a)N! H Fp— Defining the functionf(t) = t°1,4(t), we can rewrite the
o ™1 o 17" (43) above equality as
< (#MN-1o(n),
def _ ] ) Oz/ f(t) cos(nt
whereC(m) = [[;2,(1 — 7*)~!. We can easily verify that -0
C(w) > 1 for all 7, and that it is a decreasing function of m+2mk
i.e, C(m) > C(my) for m < m. = / f(t) cos(nt) dt
J k]‘ keZ —7T+27Tk}

For any integew > 2, we factorize it intod = Hj:1 7,
wherer, mo, . ..,  are distinct prime factors. It follows from / Z f(t 4 27k) cos(n(t + 27k)) dt

Lemma 4 and inequality (43) that T ez
H HN H N 1 H C 7T7 = /_Fg(t) COS(nt) dt, n ez \ {O}, (49)
N1 J where g(t) ger > orez f(t + 2mk). Actually, since f(t) is
=077 H C(m;). (44)  compactly supported, the sum generatiig) contains only a
J=1 finite number of nonzero terms. The equality (49) means that

all the even Fourier coefficients (except for the DC term) of

Next, we just need to shol[7_, C(r;) < 22 §9-001, et . .
) W, Olm) g(t) are zero, which implies that(t) is an odd function plus

For a given positive integet, we define a sefl consisting tant
of all prime factors{x;,} of ¢ that are less than, i.e, A def Some constant : . .
) For ¢ > 1, the function f(t) is strictly convex on[a, b];

jﬂé 'Jlaﬁdjﬂjgzjn?%é (fag];HSrllvaZtr:ay, letB = {m: 1< pechf)dizing the endpoints df, b] gives .an “gxceptional" set
E = (a+27Z) U (b+2nZ), and sog(t) is strictly convexon
each subinterval of—, 7] \ E. However, from the symmetry
H C(my) = H C(n) H C(m). (45)  of g(t) (i.e.an oddﬂ‘functi]o\n plus some constantjt) will be
7=1 A meB strictly concaveon the reflected (w.r.t. the origin) versions of
In the above expression, whenevér or B is empty, the these intervals. This is a contradiction, and hence théainit
corresponding product on that set is understood to efualassumption (48) does not hold. ]
Let P represent the set of all prime numbers. It then follows

from the definition ofA that

H O < H C(r). (46) D. Proof of Proposition 7

TEA rEP, m<n We start by proving (33) for the special case whehis the
Denote by|B| the cardinality ofB. If |B| > 0, then for all identity matrix. Using the formula (17) dfp(x), and writing

7 € B, we haver > n and hence”(r) < C(n). Meanwhile, “* = T(Pry1 — Pi), We get
sinced > [[..5m > nlPl, we have|B| < log,, 4. It follows

K
that 1p(x) < Z dy; |sinc(z - 0 /)|
B lognd _ slognCl(n 2m||z|| £
II ¢ < cm)P! < C(n)lesm? = gloonCim — (47)
meB Z
Subsututmg (46) and (47) into (45), we obtain 27TH:BH \/1+ (x - Ok

I 1 C(mj) < 81O cp e, O(m). We have the

freedom in choosing:. For example, whem = 192, the where the second inequality is due to the fact {hiaic(z)| =
exponent become&g;9,C(192) ~ 9.98 x 10~* < 0.001; |sin(7z)/(7z)| < /1. 5/ (1+ 7222 Applylng the Cauchy-
the constant factor becomé$, . ., C(m) ~ 21.7 < 22. Schwarz inequality> ", 1-2;)% < K Yp_, # to the above
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expression yields [4]

3K XK: d?
seflz]? &= T+ (- 0x)°

K
3K
) Zdi Go, (),
k=1

L (2)® < [5

—_

(50)
[7]

whereGo(z) &' ||z ~2(1 + (= - 6)?)~1.
Next, we derive an upper bound for the infinite sum of[s]
Go(x). For arbitrary|u| < ‘/75 <7 < ||n||oo,

Go(n)  |n+ull?14+(n-0+u-6)> &l
Go(n+u)  |n|? 1+ (n-6)>
||u||)2 2
< (14 4+ 1+ |u-0 [10]
(14 fap) oo
1 11
<+ —— 20V . 1y M
Var [12
It then follows thatGg(n) < Cy fue[fl,lP Go(n+u)du =
Co an_l 132 Ge(u) du, and therefore [13]
14
> Ge(n) 1
nez? |n|o>r
[15]
< Ce/ Go(z) dx
)| >r—3 (16]

> /2 4 da
o / v [ e O
> (18]
= Ce/ L dp < L"l’ (53)
r—1 \ pv/1+6]?p? 16l (r—3)

where (53) is obtained from (52) based on the followingg]
identity: for any constant ='|16]|22, 20]

— arctan tana = 1+0 , f0r0§a<:
do V1i+b 1+ bcos? a 2 [21]

Substituting (51) and (53) into (50), and usi. || = wdy,
we reach the inequality (33) for the case whé# is an
identity matrix. For generaM, we use the following change
of variables:1p(w) = 1 ,7p(MTw), and hencelp(z) =
| M|~ pprp (ML), It follows that

>

nEZ? ||nlo>r

[22]

(23]
[24]

|M]| ip(Mn)[?

[25]

:ﬁz

neZ?,|nloc>r

|iMTD(n)|2' [26]

Applying the previous result td y,7p(n) leads to (33). (27]
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