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On the Bandwidth of the Plenoptic Function
Minh N. Do, Davy Marchand-Maillet, and Martin Vetterli

Abstract—The plenoptic function (POF) provides a powerful
conceptual tool for describing a number of problems in im-
age/video processing, vision, and graphics. For example, image
based-rendering can be seen as sampling and interpolation of
the POF. In such applications, it is important to characterize
the bandwidth of the POF. We study a simple but representative
model of the scene where bandlimited signals (e.g. texture images)
are “painted” on smooth surfaces (e.g. of objects or walls).We
show that in general the POF is not bandlimited unless the
surfaces are flat. We then provide simple rules to estimate the
essential bandwidth of the POF for this model. Our analysis
reveals that, in addition to the maximum and minimum depths,
the bandwidth of the POF also depend on the maximum surface
slope and maximum frequency of painted signals. With a unifying
formalism based on multidimensional signal processing, wecan
verify several key results in POF processing, such as induced
filtering in space and depth correction interpolation, and quantify
the necessary sampling rates.

Index Terms—plenoptic function, image-based rendering, sam-
pling, spectral analysis, bandwidth.

I. I NTRODUCTION

Existing visual recording systems use a single camera, and
thus provide viewers with a limited and passive viewing expe-
rience. The continuing improvement in digital technology has
offered low-cost sensors and massive computing power. This
has led to the development of new systems employing multiple
cameras together with sophisticated processing algorithms
to deliver unprecedented immersive recording and viewing
capabilities. Practical systems, calledimage-based rendering
(IBR) [1], that synthesize arbitrary virtual viewpoints from
several fixed sensors have already emerged; see [2], [3], [4]
for surveys of this area.

A natural framework for studying multiview acquisition and
rendering is the concept of theplenoptic1 function (POF)
[5] that describes the light intensity passing through every
viewpoint, in every direction, for all time, and for every
wavelength. The IBR problem can be treated as an application
of the sampling theory to the POF. In this setting, acquired
views from the cameras provide discrete samples of the POF,
and the synthesized view is reconstructed from the continuous
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École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland.

M. Vetterli is with the Audiovisual Communications Laboratory, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzer-
land, and with the Department of Electrical Engineering andCom-
puter Science, University of California, Berkeley CA 94720(email: mar-
tin.vetterli@epfl.ch).

This work was supported in part by the US National Science Foundation
under Grant CCR-0312432 and the Swiss National Science Foundation under
Grant 20-63664.00.
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POF at a given point. The question of the minimum rate for
sampling the POF can be addressed by spectral analysis and
estimating the bandwidth of the POF.

The first sampling analysis for IBR was done by Chai et
al. [6]. They analyzed the spectral support of the POF to
find an optimal uniform sampling rate for the POF. Zhang
and Chen [7] extended IBR sampling for more general cases,
including non-Lambertian and occluded scenes. IBR sampling
analysis is also reviewed in detail in a recent book [4]. In these
previous studies, as for any spectral-based technique, thePOF
is assumed to bebandlimited.

In this paper, we would like to examine more precisely
the spectral analysis and bandlimited assumption of the POF.
To facilitate this, we study a simple but representative model
where bandlimited signals (e.g. texture images) are painted
on smooth surfaces (e.g. of objects or walls). Using related
mathematical results on domain-warped bandlimited signals,
we show that, in general, the POF isnot bandlimited unless
the surface is flat. We then provide simple rules to estimate
the essential bandwidth of the POF for this model.

It is important to note that the POF is a powerful conceptual
tool for describing a number of problems in image/video pro-
cessing, vision, and graphics. Most acquired and synthesized
forms of visual information, including images and videos, can
be treated as low-dimensional “slices” (e.g. by fixing certain
variables) of the POF. Hence, spectral analysis of the POF
has applications beyond IBR. For example, see [8] for an
application in light transport and [9], [10] for applications in
computational photography.

The outline of the paper is as follows. In Section II, we set
up the scene and camera models and characterize the spectral
support of the POF. In Section III, we start focusing on the
model in which bandlimited signals are “painted” on object
surfaces. In Section IV, we discuss condition for the POF
to be bandlimited. In Section V, we derive a simple rule to
estimate the essential bandwidth of time-warped functions. In
Section VI and Section VII, we apply this rule to estimate
the essential bandwidths of the POF and the sheared (or
depth corrected) POF and illustrate this with some numerical
experiments. Some preliminary results of this paper were
presentend at a conference [11].

II. SCENE AND CAMERA MODELS

A convenient way to parameterize the POF is to use the two-
plane parameterization, also known as light field or lumigraph
[12], [13], as shown in Figure 1. By restricting the scene in
a bounding box, each light ray can be specified by a pair of
coordinates(t, u) and(v, w) corresponding to the locations of
the camera and the image pixel within a camera, respectively.
Note that the image coordinate(v, w) is defined relatively with
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respect to the camera position(t, u). Hence equivalently,(t, u)
specifies the viewing position and(u, w) specifies the viewing
angle.

The two-plane parameterization fits thepinhole camera
model [14], in which all pixels in a camera correspond to light
rays that are emitted from one point – the camera position.
The value of the plenoptic functionp(t, u, v, w) is the light
intensity captured by a camera at location(t, v) and at pixel
location (v, w) within that camera. In general,p(t, u, v, w)
is the light intensity at the intersection of the ray specified
by (t, u, v, w) with the nearest object surface to the camera
position (t, v).

image plane
surface

v

w

t

u

camera plane object

Fig. 1. The two-plane parameterization of the plenoptic function. Each light
ray is specified by a 4-D coordinate(t, u, v, w), where(t, u) corresponds to
the camera location in thecamera planeand(v, w) corresponds to the image
point (or pixel) in theimage plane. Effectively, (t, u) specifies the viewing
position and(u, w) specifies the viewing angle.

For simplicity of exposition, and as in [6], [7], we consider
a 2-D version of the POF,p(t, v), by fixing u and w. This
corresponds to the situation where the cameras are placed on
a straight line and we consider the same image scan-line from
each camera. Alternatively, we could view this as a flatland
model where the 3D world is “flattened” into a 2D plane. The
function p(t, v) is also known as epipolar-plane image (EPI)
[15] and plays an important role in computer vision [14], [16].

We consider the scene model, as shown in Figure 2, that
consists of an object surface (in the 2D setting of the POF,
this a slice of the surface) specified by its varying depthz(t).
Without loss of generality, we rescale the depth valuez so that
the focal length or distance between the camera and image
planes is equal to 1. This scene model represents amicro-
scale analysisof the plenoptic function, where locally only
one object surface is visible.

Suppose that the light ray(t, v) specified by the camera
(or viewing) positiont and pixel position (or viewing angle)
v intersects with the object surface at a point with coordi-
nate (x, z(x)) as shown in Figure 2. Then simple geometric
relations lead to

t = x − z(x) tan(θ) = x − z(x)v. (1)

Equation (1) defines a fundamentalgeometric mappingthat
links a light ray (t, v) to a positions specified byx on the
object surface that is “seen” by this light ray.

We assume that there isno self-occlusionon the object
surface in the field-of-view of the cameras. This means that
each light ray(t, v) within the field-of-view can intersect with
at most one point on the object surfacez(x). This is equivalent

t

v

x

1

s
z(x)

θ

Fig. 2. Scene model with a functional surfacez(x). Coordinatest, v, and
z specify the camera position, pixel position, and depth, respectively. The
depth axis is rescaled so that the focal length or the distance betweent and
v axes is 1; and thus the pixel positionv is related to the viewing angleθ by
v = tan(θ).

to requiring thatt given in (1) is a strictly monotonic function
of x, which amounts to

|z′(x)| <
1

vmax
, (2)

where the field-of-view is limited by|v| ≤ vmax. In other
words, the slope of the object surfacez(x) is bounded by the
maximum viewing angle.

Let l(x, v) be the light intensity emitted from the object
surface positionx and viewing anglev (see Figure 2). The
function l(x, v) is also known as thesurface light field[17]
or surface plenoptic function[7]. Then using (1) and under
the no self-occlusion assumption we have

p(t, v) = l(x, v), where t = x − z(x)v. (3)

Taking the Fourier transform of the plenoptic function
p(t, v) using (3) we obtain

P (ωt, ωv)
def
= Ft,v{p(t, v)}

=

∫
∞

−∞

∫
∞

−∞

p(t, v) e−j(ωtt+ωvv) dtdv

=

∫
∞

−∞

∫
∞

−∞

l(x, v) e−j(ωt(x−z(x)v)+ωvv) (1 − z′(x)v) dxdv

=

∫
∞

−∞

e−jωtx

∫
∞

−∞

(1 − z′(x)v) l(x, v) e−j(ωv−z(x)ωt)v dvdx

=

∫
∞

−∞

e−jωtx H(x, ωv − z(x)ωt) dx, (4)

where we denoteh(x, v)
def
= (1 − z′(x)v) l(x, v) and

H(x, ωt)
def
= Fv{h(x, v)} =

∫
∞

−∞
h(x, v) e−jωvv dv. Simi-

larly, we denoteL(x, ωv)
def
= Fv{l(x, v)}, and then Fourier

transform properties lead to

H(x, ωv) = L(x, ωv) − jz′(x)
∂L(x, ωv)

∂ωv
. (5)

Typically, except for rare cases of highly specular surfaces,
at a fixed surface positionx the emitted light intensityl(x, v)
changes very slowly with respect to the viewing anglev. In the
extreme case, the surface is often assumed to beLambertian
[16], which meansl(x, v) = l(x) for all v. Thus, it is
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Fig. 3. The spectral supports of the plenoptic functionp(t, v). (a) The original support is contained between two lines corresponding to minimum and
maximum depths, plus an extended region accounting for non-Lambertian surfaces. (b) Lowpass filtering in the pixel dimension v induces lowpass filtering
in the spatial dimensiont. (c) Sampling in space alongt leads to periodization in frequency alongωt.

reasonable to assume thatl(x, v) is a bandlimited function
in the variablev. Using (4) and (5) we immediately obtain
the following result.

Proposition 1: Given the no self-occlusion condition (2)
and suppose that

L(x, ωv) = 0, if |ωv| > BL. (6)

Then

P (ωt, ωv) = 0, if |ωv − z(x)ωt| > BL for all x. (7)

Therefore, as shown in Figure 3(a), the spectral support
of the plenoptic functionp(t, v) is contained between two
lines corresponding to minimum and maximum depths, plus
an extended region accounting for non-Lambertian surfaces.
This key finding was first discovered by Chai et al. [6] for
Lambertian surfaces and later extended by Zhang and Chen
[7] for non-Lambertian surfaces. However, in both of these
previous works the derivations are approximations based on
“truncating windows”, in which the scene is approximated by
piece-wise constant depth segments and the truncation effect
in the spectral domain is ignored. Here, we show that for no-
self-occlusion surfaces with bandlimited light radiance,the
resulting POF has spectral supportexactly contained in the
region specified by (7). Moreover, our analysis reveals the
role of the surface slopez′(x) as given in the second term in
(5). This term was ignored in previous analyses with constant
depth assumption.

This “bow-tie” shape spectral support of the POFp(t, v)
makes it possible to inducecontinuous-domainlowpass fil-
tering in the spatial dimensiont via induced filteringin the
pixel dimensionv. Generally, it is physically impossible to
realize continuous-domain filtering in the spatial dimension
since we donot have access to the POF in the continuous
domain of t, but rather only at discrete locations where we
have actual cameras. On the other hand, continuous-domain
lowpass filtering in the pixel dimensionv is possible by the
optical system in the cameras. Because of the “bow-tie” shape
spectral support of the POF, Figure 3(b) illustrates that lowpass
filtering in v induces lowpass filtering int as well. As a result,

Figure 3(c) shows that we can sample the POF in space (i.e.
by placing cameras at discrete location alongt) without alias.
This induced filtering property also holds for sound signalsas
was shown in a study of theplenacousticfunction [18].

Typically, the plenoptic functionp(t, v) is captured by cam-
eras withfinite pixel resolution∆v along the pixel dimension
v. Thus, previous analyses [6], [7]assumethat P (ωt, ωv) is
bandlimited in theωv dimension to|ωv| ≤ π/∆v. Based on
this assumption and using Proposition 1 and Figure 3(b), it
follows that the bandwidth of the POF depends only on the
range of depths and the pixel resolution.

However, the actual continuous-domain plenoptic function
p(t, v) might not be bandlimited according to the camera
resolution. In some applications, it might be of interest tostudy
the intrinsic bandwidth of the POF according to the underlying
scene rather than the capturing devices. In this paper, we want
to characterize the bandwidth of the POFp(t, v) according to
a simple but representative scene model that will be described
in the next section.

III. SURFACE MODEL: SIGNALS PAINTED ON SURFACES

First, we restrict to Lambertian surfaces; i.e.l(x, v) = l(x).
Second, we assume that the light radiancel(x) is result of a
bandlimited signalf(s) (e.g. texture image) “painted” on the
object surface, wheres = s(x) is the curvilinear coordinate
(i.e. s corresponds to the arc length) on the surface. That is

l(x) = f(s(x)).

The surface coordinatex is determined by the light ray
coordinate(t, v) as x = x(t, v) according to the geometric
mapping equation (1) as

t = x(t, v) − v z(x(t, v)). (8)

With a slight abuse of notation, we writes(t, v) = s(x(t, v))
for the composite mapping from light ray coordinate(t, v)
to the curvilinear coordinates on the surface. With these
mappings, we can relate the plenoptic functionp(t, v) to the
“painted” signalf(s) on the object surface as

p(t, v) = l(x(t, v)) = f(s(x(t, v))) = f(s(t, v)). (9)
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We study the bandwidth of the POFp(t, v) by fixing either
t or v. Note that fixingt in the POFp(t, v) corresponds to
considering an image captured by a fixed camera, whereas
fixing v corresponds to considering signal recorded at a fixed
pixel location by a moving camera. In both cases, we obtain
a time-warped function of a bandlimited functionf(s(t))
wheret ands denote a generic variable and warping function,
respectively. Figure 4 depicts this generic case study of the
POF.

f(s) camera
pinhole

projection
f(s(t))

Fig. 4. Mapping fromf(t) to (f ◦ s)(t) = f(s(t)) due to the pinhole
camera projection.

Fixing either v or t and taking the derivative of (8) with
respect to the other variable, we get

∂x(t, v)

∂t
=

1

1 − v z′(x)
(10)

∂x(t, v)

∂v
=

z(x)

1 − v z′(x)
. (11)

Hereafter, for brevity, in the right-hand sides we writex for
x(t, v). The no-self-occlusion condition (2) implies that both
of these partial derivatives are positive forv ∈ [−vmax, vmax]
or within the field-of-view. This means thatx(t, v) is a
strictly monotonic function in each coordinatet andv. Using
differential relationds =

√
dx2 + dz2 =

√
1 + (z′(x))2dx,

we obtain the partial derivatives ofs with respect tot andv
as

∂s(t, v)

∂t
=

ds

dx

∂x(t, v)

∂t
=

√
1 + (z′(x))2

1 − v z′(x)
(12)

∂s(t, v)

∂v
=

ds

dx

∂x(t, v)

∂v
=

z(x)
√

1 + (z′(x))2

1 − v z′(x)
(13)

From (12), we see that if the surface is flat, i.e.z′(x) is a
constant then∂s(t, v)/∂t is a constant ors(t, v) is an affine
function in t for each fixedv. Conversely, under the no-self-
occlusion condition (2), ifs(t, v) is affine for a fixedv then
it is easy to see thatz′(x) must be a constant, and thus the
surface must be flat.

Finally, we note that both partial derivatives ofs given in
(12) and (13) are greater than 1.

IV. BANDLIMITED PLENOPTIC FUNCTIONS

As noted in the introduction, to address the sampling
problem of the plenoptic function we need to study its spectral
support. In this section, we examine the bandlimitedness of
the plenoptic function given in (9). In plenoptic sampling for
IBR, the main variable of interest ist, the camera position, as
it leads to conditions on how to place the cameras. So let us
consider the situation where the pixel positionv is fixed, and
for brevity we drop the variablev in functions in this section.

Again, suppose that the painted signalf(s) is bandlimited.
From the discussion at the end of the last section we note
that if the surface in our scene is flat, thens(t) is affine and
the plenoptic functionp(t) = f(s(t)) is a uniformly stretched
version off(t). Thus, it follows immediately from the shifting
and scaling properties of the Fourier transform thatf(s(t)) is
also bandlimited. We are interested to know if there are any
other surfaces that result in bandlimited plenoptic functions.

Time-warped bandlimited functions have been studied in
the signal processing literature. In [19], Clark conjectured that
when a bandlimited functionf is warped by a monotonic
function s, the resulting function(f ◦ s)(t) = f(s(t)) is also
bandlimitedif and only if s(t) is affine. In [20], this conjecture
was proved for a large class ofs(t), in particular fors(t) that
on certain interval is a restriction of an entire function.2 Later,
in [21], Clark’s conjecture was shown to be false by a peculiar
counterexample constructed by Y. Meyer. However, that paper
also noted that it is not possible for a non-affine warping
function to preserve bandlimitedness in general. Unaware of
this line of work, in [22], we made the same conjecture on
the preservation of bandlimitedness under warping.

The implication of the above result is that in general, the
plenoptic function isnot bandlimited unless the surface is flat.
In the next sections we will study theessential bandwidth,
defined as the bandwidth where most of the signal energy
resides, of the plenoptic function for general smooth surfaces.

V. BANDWIDTH OF TIME-WARPED FUNCTIONS

Let denoteg(t) = (f ◦ s)(t) to be a time-warped function
that models the plenoptic function as was described in Sec-
tion III. Its Fourier transform is

G(ξ) =

∫
∞

−∞

f(s(t))e−jξtdt. (14)

Let F (ω) be the Fourier transform off(s). Then,

f(s) =
1

2π

∫
∞

−∞

F (ω)ejωsdω. (15)

Substituting (15) into (14) we obtain

G(ξ) =
1

2π

∫
∞

−∞

F (ω)

(∫
ejωs(t)e−jξtdt

)
dω

=
1

2π

∫
∞

−∞

F (ω)Ks(ξ, ω)dω, (16)

where Ks(ξ, ω)
def
= Ft{ejωs(t)} is the Fourier transform of

ejωs(t). The kernel functionKs(ξ, ω) characterizes how the
warping functions broadens the spectrum off in the warped
function g = f ◦ s. To see this effect, first consider the case
when s is an affine function:s(t) = a + bt. In this case we
have

Ks(ξ, ω) = Ft{ejω(a+bt)} = 2πejaωδ(ξ − bω), (17)

2An entire function is a function of complex variable that hasderivative at
each point in the entire finite plane. In particular, bandlimitted functions are
entire functions.
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which is concentrated along the lineω = ξ/b. Substitute (17)
into (16) we get

G(ξ) =
ejaξ/b

|b| F

(
ξ

b

)
.

Thus, for the affine warpings(t) = a + bt we can relate the
bandwidth of the warped functiong = f ◦ s to the bandwidth
of f as

BWg = |a| BWf = |s′| BWf . (18)

Next, consider a more general situation in which the warp-
ing functions deviates from an affine function as

s(t) = a + bt + s̃(t). (19)

Then the kernelKs(ξ, ω) becomes

Ks(ξ, ω) = Ft{ejω(a+bt) · ejωs̃(t)}
= 2πejaωδ(ξ − bω) ∗ξ Ft{ejωs̃(t)}. (20)

Consider a simple case where the deviations̃(t) is an
oscillation function with a single frequencyµ > 0, i.e.
s̃(t) = c sin(µt). Using the following expansion

ejx sin(α) =

∞∑

n=−∞

Jn(x)ejnα,

whereJn(x) is then-th order Bessel function of the first kind,
we have

Ft{ejωc sin(µt)} = 2π

∞∑

n=−∞

Jn(cω) δ(ξ − nµ).

The Bessel functionsJn(x) decay exponentially for suffi-
ciently largen and are negligible for|n| > |x| + 1. Thus,
for s̃(t) = c sin(µt), the Fourier transformFt{ejωs̃(t)} is
essentially zero for frequency|ξ| > |cµω| + µ. Based on this
approximation, substituting back in (20) and then (16), we see
that the essential bandwidth ofg is

essBWg = (|b| + |cµ|) BWf + µ. (21)

Note that in this cases(t) = a+bt+c sin(µt), we can write
|b| + |cµ| = max|s′|. Moreover, for the plenoptic function,
typically the oscillation of the surfaces is much smaller than
the oscillation of the painted texturef , thereforeµ ≪ BWf .
Furthermore, as noted at the end of Section III, for plenoptic
function |s′| > 1. Thus, from (21) we can write

essBWg = (max|s′|) BWf . (22)

In words, the essential bandwidth of the time-warped func-
tion g(t) = f(s(t)) can be approximated by the product of
the maximum derivative ofs with the bandwidth off .

The rule (22) can be approximated for general warping
function s as follows. Since typicallys is smooth, it can be
approximated by a piecewise linear function

ŝ(t)
def
= s(tk) + s′(ξk)(t − tk) for t ∈ [tk, tk+1] (23)

with appropriately chosenξk ∈ [tk, tk+1] and sufficiently
small segments[tk, tk+1]. Then the time-warped function
g(t) = f(s(t)) can be approximated by

ĝ(t)
def
= f(ŝ(t)) (24)

= f(s(tk) + s′(ξk)(t − tk)) for t ∈ [tk, tk+1)

=
∑

k

f(s(tk) + s′(ξk)(t − tk)) bk(t), (25)

wherebk(t) is the indicator function of the interval[tk, tk+1];
i.e. bk(t) equals to1 for t ∈ [tk, tk+1] and0 otherwise. Denote
fk(t) = f(s(tk)+ s′(ξk)(t− tk)), which is an affine warping.
Then we can relate the bandwidth offk to the bandwidth of
f as

BWfk
= |s′(ξk)| BWf .

Sincebk(t) is a rectangular function of length(tk+1 − tk),
its Fourier transformBk(ω) is a sinc function with essential
bandwidth

essBWbk
=

1

tk+1 − tk
.

From (25) it follows thatĜ(ω) =
∑

k Fk(ω) ∗ Bk(ω), and
hence

essBŴg = max
k

(
|s′(ξk)| BWf +

1

tk+1 − tk

)
. (26)

For the plenoptic function, typically the oscillation ofs is
much smaller than the oscillation off . Therefore, a good
approximation off(s(t)) can be obtained fromf(ŝ(t)) using
a piecewise linear approximation ofs(t) as in (23) with
maxk 1/(tk+1−tk) ≪ BWf . Thus, we can discard the second
term on the right-hand side of (26) and obtain

essBWg ≈ essBŴg ≈ (max|s′|) BWf ,

which is the desired result (22). Note that this approximation
is exact for affine warpings as shown in (18).

The bandwidth analysis of time-warped functions in this
section follows the bandwidth analysis of FM (frequency-
modulation) signals in communication systems [23]. A similar
rule like (22) is called the Carson’s rule in the communication
systems literature. We note that both the Carson’s rule and
(22) are difficult to prove precisely, except for some particular
cases, and thus they should be viewed as “rules of thumb”.
In the next sections, we will show that the rule (22) is
quite accurate and provides an effective mean to estimate the
bandwidth of plenoptic functions.

VI. BANDWIDTH OF PLENOPTIC FUNCTIONS

The result (22) from the last section reveals the role of the
maximum absolute value of the derivatives of the curvilinear
coordinates on the bandwidth of the plenoptic function.
These maximum derivatives represent the worst cases of the
multiplicative term in the bandwidth expansion of the POF as
given in (22). From (12) and (13) we have

max
∂s(t, v)

∂t
≤

√
1 + max|z′|2

1 − vmax max|z′| (27)

max
∂s(t, v)

∂v
≤ zmax

√
1 + max|z′|2

1 − vmax max|z′| . (28)
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With these maximum derivatives, together with the knowl-
edge of the bandwidth of the painted signal (or texture
image)f on the object surface, we obtain essential bandwidth
estimates for the POF using (22). Intuitively, the results (27)-
(28) imply that when varying camera positiont, the worse
case of bandwidth expansion comes from the steepest slope
(with respect to the camera axis) on the object surface. When
varying pixel positionv, the worst case happens when the
surface is at the steepest point and furthest, and the pixel is
at the boundary of the field-of-view. These findings are also
noted in the literature on texture mapping and image warping
[24].

camera

object surface
light ray

t

v

z

s

α

θ

C

R

0

0

1

Fig. 5. The scene with acurved wallthat is used in numerical experiments.

To illustrate and validate these rules for estimating the
bandwidth of the POF we consider a synthetic scene as shown
in Figure 5. Note that as before, all length measures are
normalized so that the focal length (i.e. the distance betweent
andv axes) is equal to 1. In the scene, there is acurved wallas
an arc of a circle with radiusR and center at distanceC from
the origin on thez axis. A texture signalf(s) = sin(2πκs) of
frequencyκ is painted on the wall. For convenience, we also
specify a point on the object surface by the angleα between
the corresponding radial line with thez-axis (see Figure 5).
Then 





x

R
= sin(α)

C − z(x)

R
= cos(α)

s = αR.

(29)

It follows that
z′(x) = tan(α).

Substituting (29) into the geometric mapping equation (1)
and usingθ to specify the pixel position,v = tan(θ), we get

t = R sin(θ) − (C − R cos(θ)) tan(θ).

From this we can express the curvilinear coordinates on
the object surface through the light ray coordinates(t, v) as
(noting θ = tan−1(v))

s = R

(
sin−1

(
t cos(θ) + C sin(θ)

R

)
− θ

)
. (30)

Figure 6(b) shows the resulting POF of acurved wallwith
C = 20, R = 10, andκ = 2. The examined ranges oft and
v are: t ∈ [−3, +3], andv ∈ [−0.35, +0.35] (with the focal
length normalized to 1, this is equivalent to using 50 mm lens
on a 35 mm camera). With these parameters, the surface depth
is in the rangez(x) ∈ [10, 13.76] and the surface slope is in
the rangez′(x) ∈ [−1.25, 1.25]. Plugging these values into
(27)-(28) and (22), we obtain the following estimates for the
essential maximum frequencies ofP (ωt, ωv) as

{
ωmax

t /(2π) = 5.7Hz,

ωmax
v /(2π) = 78.6Hz.

These estimates agree well with the plot ofP (ωt, ωv) for
curved wall in Figure 6(d). Also note in the plot that the
spectral support of the POF is sandwiched between the lines
ωv = zminωt andωv = zmaxωt as illustrated in Figure 3.

For comparison, Figure 6(a) and Figure 6(c) show the POF
and its spectrum for the same camera configuration and painted
texture, except the wall isflat at constant depthz(x) = 11.5.
Comparing to theflat wall case, the spectrum support of the
POF of thecurved wall is significantly broader, both in the
angle and the radial length of the cone-shape region illustrated
in Figure 3. The angular broadening of the POF spectrum
is due to the varying of surface depthz(x), as was noted
previously in [6]. However the radial broadening of POF
spectrum, which is due to the maximum surface slopez′(x)
as indicated in (27)-(28), is only revealed in this work.

VII. B ANDWIDTH OF SHEARED PLENOPTIC FUNCTIONS

The results in the last section characterize the bandwidths
of the plenoptic functionp(t, v) in each dimensiont and v
separately. For plenoptic sampling, such bandwidths are rele-
vant if we sample and reconstruct along each dimensiont and
v separately while fixing the other dimension. However, the
typical shapes of POF spectral supports as seen in Figure 3 and
Figure 6(c-d) indicate that we can compact the POF spectrum
more (and hence have less aliasing in sampling) bynon-
separablyprocess the two dimensionst and v. In particular,
using the knowledge of minimum and maximum depths,zmin

andzmax, and the property of POF spectral support as shown
in Figure 3, optimalnon-separablereconstruction filters for
IBR were derived in [6], [7].

An alternative approach to explore this property of the
POF spectrum support in IBR using only 1D reconstruction
filter is as follows. Since the POF spectral support is slanted
according to the depth range,shearing the POF spectrum
as shown from Figure 7(c) to Figure 7(d) would make it
more compact alongωt axis. Figure 7(a) and Figure 7(b)
illustrate the spatial supports of the corresponding functions
with spectra given in Figure 7(c) and Figure 7(d); namely,
the POF and its sheared version. More precisely, the desired
shearing operator is obtained by the following change of
variable in the frequency domain

{
ωt′ = ωt − ωv/z0,

ωv′ = ωv.
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Fig. 6. Examples of the plenoptic functionp(t, v) and its Fourier transformP (ωt, ωv) for flat and curved walls.

The corresponding change of variable in the space domain
is {

t′ = t,

v′ = v + t/z0.

Geometrically, this shearing operator maps, in the frequency
domain, the lineωv = z0ωt into the ωv′ axis [i.e. from
Figure 7(c) to Figure 7(d)]; or equivalently, in the space
domain, it maps thet axis into the linev′ = t′/z0 [i.e. from
Figure 7(a) to Figure 7(b)]. Therefore, with a suitable choice
of z0 such thatzmin ≤ z0 ≤ zmax, the spectrum of sheared
POF is more compact along theωt′ axis. The optimal depth
z0 suggested in [6] satisfies

1

z0
=

1

2

(
1

zmin
+

1

zmax

)
,

which can be obtained through Figure 3.
With the compact spectrum along thewt′ axis we can

achieve high quality reconstruction (i.e. less aliasing) for the
sheared POF by simply reconstructing alongt′ axis for each
fixed v′. In other words, we interpolate the sheared POF along
lines v′ = v′0. It is easy to see that corresponding to the line
v′ = v′0 in the sheared domain is the following line in the
original domain [see Figure 7(a-b)]

v + t/z0 = v0 + t0/z0. (31)

Therefore, equivalently, we can obtain high quality recon-
struction of the original plenoptic functionp(t, v) at a location

(t0, v0) by interpolating along the line (31). From (1), we see
that all corresponding light rays(t, v) that satisfy the line
equation (31) intersect with the light ray(t0, v0) at a same
point of depthz0.

The Lumigraph [13] system employs the same reconstruc-
tion strategy which they calldepth correctioninterpolation.
The authors of [13] refer to the line (31) as anoptical flow
line (where the object surface “seen” by the light ray(t0, v0)
is assumed to be at depthz0), and they expect the plenoptic
function to be smooth along the optical flow lines. Their
experiments show that reconstruction by depth-corrected in-
terpolation along the optical flow lines has significantly higher
quality compared to uncorrected interpolation (i.e. interpolate
along same pixel linesv = v0).

We can characterize the smoothness of the plenoptic func-
tion along the optical flow line (31) by estimating the band-
width of the 1D slice function of the POF along this line
(which is also the 1D function along the linev′ = v′0 of the
sheared POF). The corresponding derivative for the bandwidth
expanding factor in (22) is thedirectional derivativeof s along
the line (31) with the unit vectoru = (1,−1/z0). Using (12)-
(13), we obtain the derivative ofs in this direction as

Dus(t, v) = ut
∂s(t, v)

∂t
+ uv

∂s(t, v)

∂v

=
(1 − z(x)/z0)

√
1 + (z′(x))2

1 − v z′(x)
. (32)
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Fig. 7. Sheared spectrum of the plenoptic function by a change of variable:ωt′ = ωt − (1/z0)ωv, ω′

v
= ωv . With approriate choice ofz0, the sheared

spectrum is most compacted near theω′

v
axis.

ComparingDus in (32) to ∂s/∂t in (12), we see that,
with a suitable choice ofz0 such asz0 = (zmin + zmax)/2,
the absolute value of the derivative ofs in the direction
u = (1,−1/z0) is smaller than the one in the direction(1, 0).
Hence, according to (22), the bandwidth of the POF along the
optical flow line (31) is smaller than the bandwidth along the
same pixel linev = v0.

Figure 8 shows example slices of the POF for thecurved
wall scene described in Section VI along the same pixel line
v = v0 and optical flow line (31) witht0 = v0 = 0 and
z0 = 11.5. We see that the maximum frequency of the POF
slice along the optical flow is much smaller compared to the
one along the same pixel line, which confirms the advantage
of depth-corrected interpolation in IBR. Using (12) and (32),
and the surface depth and slope ranges for curved wall scene
found in Section VI, we obtain estimates for the maximum
frequency for these two slices of the POF as3.2 Hz and
0.6 Hz, respectively. These estimates closely characterize the
function plots in Figure 8.

VIII. C ONCLUSION

In this paper we studied the bandwidth of the plenoptic
function of a simple scene model where a bandlimited signal
is painted on a smooth surface. We show that in general the
plenoptic function for this model isnot bandlimited unless the

surface is flat. We then derive a simple rule to estimate the
essential bandwidth, defined as the bandwidth where most of
the signal energy resides, of the plenoptic function for this
model. This essential bandwidth is estimated as the product
of the bandwidth of the painted signal times the maximum
absolute derivative of the surface curvilinear coordinatealong
a certain direction. Our analysis reveals that, in additionto the
maximum and minimum surface depths, the bandwidths of the
plenoptic function also depend on the maximum surface slope
and maximum frequency of the painted signal. By treating the
POF with a unifying formalism based on multidimensional
signal processing, we can verify several important results,
including induced filtering along the camera dimensions, depth
correction interpolation in Lumigraph, and quantifying the
necessary sampling rates. Numerical results show that the
resulting estimated bandwidths of plenoptic functions are
accurate and effectively characterize the performance of image
based rendering algorithms.
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Fig. 8. Slices of the plenoptic function of the curved wall scene along:
(a) same pixel line. (b) optical flow line withz0 = 11.5.
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