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On the Bandwidth of the Plenoptic Function
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Abstract—The plenoptic function (POF) provides a powerful
conceptual tool for describing a number of problems in im-
age/video processing, vision, and graphics. For examplenage
based-rendering can be seen as sampling and interpolationf o
the POF. In such applications, it is important to characterize
the bandwidth of the POF. We study a simple but representatie
model of the scene where bandlimited signals (e.g. texturmages)
are “painted” on smooth surfaces (e.g. of objects or walls)We
show that in general the POF is not bandlimited unless the
surfaces are flat. We then provide simple rules to estimate th
essential bandwidth of the POF for this model. Our analysis
reveals that, in addition to the maximum and minimum depths,
the bandwidth of the POF also depend on the maximum surface
slope and maximum frequency of painted signals. With a unifing
formalism based on multidimensional signal processing, wean
verify several key results in POF processing, such as indude
filtering in space and depth correction interpolation, and quantify
the necessary sampling rates.

Index Terms—plenoptic function, image-based rendering, sam-
pling, spectral analysis, bandwidth.

I. INTRODUCTION

POF at a given point. The question of the minimum rate for
sampling the POF can be addressed by spectral analysis and
estimating the bandwidth of the POF.

The first sampling analysis for IBR was done by Chai et
al. [6]. They analyzed the spectral support of the POF to
find an optimal uniform sampling rate for the POF. Zhang
and Chen [7] extended IBR sampling for more general cases,
including non-Lambertian and occluded scenes. IBR samplin
analysis is also reviewed in detail in a recent book [4]. ksth
previous studies, as for any spectral-based techniqu&dte
is assumed to bbandlimited

In this paper, we would like to examine more precisely
the spectral analysis and bandlimited assumption of the. POF
To facilitate this, we study a simple but representative ehod
where bandlimited signals (e.g. texture images) are painte
on smooth surfaces (e.g. of objects or walls). Using related
mathematical results on domain-warped bandlimited sggnal
we show that, in general, the POFnist bandlimited unless
the surface is flat. We then provide simple rules to estimate
the essential bandwidth of the POF for this model.

Existing visual recording systems use a single camera, and; js important to note that the POF is a powerful conceptual
thus provide viewers with a limited and passive viewing expegq for describing a number of problems in image/video pro-
rience. The continuing |mprovemenF in digital tgchnolog@sh cessing, vision, and graphics. Most acquired and syntbésiz
offered low-cost sensors and massive computing power. TRigms of visual information, including images and videasn c
has led to the development of new systems employing multiglg {reated as low-dimensional “slices” (e.g. by fixing derta
cameras together with sophisticated processing algosith{pyriaples) of the POF. Hence, spectral analysis of the POF
to deliver unprecedented immersive recording and viewirgq applications beyond IBR. For example, see [8] for an
capabilities. Practical systems, calledage-based rendering application in light transport and [9], [10] for applicati® in

(IBR) [1], that synthesize arbitrary virtual viewpointsofn

several fixed sensors have already emerged; see [2], [3],

for surveys of this area.

computational photography.
[4Irhe outline of the paper is as follows. In Section I, we set
up the scene and camera models and characterize the spectral

A natural framework for studying multiview acquisition andy, 541t of the POF. In Section Ill, we start focusing on the
rendering is the concept of thplenoptic function (POF) a4el in which bandiimited signals are “painted” on object
[5] that describes the light intensity passing through YVeg, taces In Section IV, we discuss condition for the POF
viewpoint, in_every direction, for all time, and for everyy, pe pandiimited. In Section V, we derive a simple rule to

wavelength. The IBR problem can be treat_ed as .an applic?‘tié)ﬁimate the essential bandwidth of time-warped functioms
of the sampling theory to the POF. In this setting, acquir§h tion VI and Section VI, we apply this rule to estimate

views from the cameras provide discrete samples of the PQfe essential bandwidths of the POF and the sheared (or

and the synthesized view is reconstructed from the cOnti8UQye i, corrected) POF and illustrate this with some numkrica
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1Plenusin Latin means complete or full.

experiments. Some preliminary results of this paper were
presentend at a conference [11].

Il. SCENE AND CAMERA MODELS

A convenient way to parameterize the POF is to use the two-
plane parameterization, also known as light field or lunpgra
[12], [13], as shown in Figure 1. By restricting the scene in
a bounding box, each light ray can be specified by a pair of
coordinategt, v) and (v, w) corresponding to the locations of
the camera and the image pixel within a camera, respectively
Note that the image coordinate, w) is defined relatively with
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respect to the camera positién ). Hence equivalently(t, «)
specifies the viewing position arfd, w) specifies the viewing
angle.

The two-plane parameterization fits thpnhole camera
model [14], in which all pixels in a camera correspond totigh
rays that are emitted from one point — the camera position.
The value of the plenoptic functiop(t, u, v, w) is the light
intensity captured by a camera at locatignv) and at pixel
location (v, w) within that camera. In generah(t, u, v, w)
is the light intensity at the intersection of the ray spedifie

by (¢,u,v,w) with the nearest object surface to the camera

position (t7 y), Fig. 2. Scene model with a functional surfacgr). Coordinates, v, and
z specify the camera position, pixel position, and depthpeesvely. The
depth axis is rescaled so that the focal length or the distéetween: and

camera plane image plane Sc:ﬁ'fzte v axes is 1; and thus the pixel positienis related to the viewing angie by
v = tan(0).
Wi S~a
) //Q to requir_ing thatt given in (1) is a strictly monotonic function
! of «, which amounts to
_—— ! 1

— | T @) < o @

- - where the field-of-view is limited byv| < vp.x. In other

Fig. 1. The two-plane parameterization of the plenopticcfiam. Each light words, the slope of the object surfacer) is bounded by the
ray is specified by a 4-D coordinate, u, v, w), where(t, u) corresponds o avimum viewing angle

the camera location in theamera planeand (v, w) corresponds to the image - . . . .
point (or pixel) in theimage plane Effectively, (¢, «) specifies the viewing L€t [(z,v) be the light intensity emitted from the object
position and(u, w) specifies the viewing angle. surface positionz and viewing anglev (see Figure 2). The

function {(z, v) is also known as thesurface light field[17]

For simplicity of exposition, and as in [6], [7], we consideor surface plenoptic functiofi7]. Then using (1) and under
a 2-D version of the PORy(¢,v), by fixing v and w. This the no self-occlusion assumption we have
corresponds to the situation where the cameras are placed on
a straight line and we consider the same image scan-line from p(t,v) = l(z,v),
each camera. Alternatively, we could view this as a flatland Taking the Fourier transform of the plenoptic function
model where the 3D world is “flattened” into a 2D plane. Th (t,v) using (3) we obtain
function p(¢, v) is also known as epipolar-plane image (EP
[15] and plays an important role in computer vision [14],]116 P(w;,w,,) ]-'t o{p(t,v)}

We consider the scene model, as shown in Figure 2, that

/ / (t,v) e (wettwuv) qedy

where t =z — z(x)v. 3)

consists of an object surface (in the 2D setting of the POF;

this a slice of the surface) specified by its varying deg(h).

Without loss of generality, we rescale the depth valse that / / (z,v) e I Wile=2@)+wor) (1 _ 2/ (1)y) dedo
the focal length or distance between the camera and image

planes is equal to 1. This scene model represemntsicao- 7/ ﬂwtz/ (1 — 2 (z)v) (z, ) eI @Wo=2(@)we)v Jud
scale analysiof the plenoptic function, where locally only o o

one object surface is visible.

Suppose that the light ragt,v) specified by the camera
(or viewing) positiont and pixel position (or viewing angle)
v intersects with the object surface at a point with coordiwhere we denoteh(x v) (1 - z’(x)v) I(x,v) and
nate (x, z(x)) as shown in Figure 2. Then simple geometriq,{(x’wt) & _7-‘ {h(z,v)} = f e~J@u du. Simi-
relations lead to

_ / T it B wy — 2(2)wr) o, (4)

def

larly, we denoteL(x,w,) % fv{l(x,v)}, and then Fourier

t=x— 2(z) tan(d) = x — z(x)v. (1) transform properties lead to
Equation (1) defines a fundamengdometric mappinghat H(z,w,) = L(z,w,) — j2 (@M (5)
links a light ray (¢,v) to a positions specified byz on the Ay
object surface that is “seen” by this light ray. Typically, except for rare cases of highly specular sugace

We assume that there 3o self-occlusionon the object at a fixed surface positiom the emitted light intensity(x, v)
surface in the field-of-view of the cameras. This means thettanges very slowly with respect to the viewing anglén the
each light ray(¢, v) within the field-of-view can intersect with extreme case, the surface is often assumed thamebertian
at most one point on the object surfage:). This is equivalent [16], which meansi(z,v) = I(z) for all v. Thus, it is
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w’U w'l)

_ We = ZminWt We = ZminW
Wy = Zmaxwt/g Wy = ZmaxWt v mintt

Wt
L L

@) (b)

Fig. 3. The spectral supports of the plenoptic functje, v). (a) The original support is contained between two linesesponding to minimum and
maximum depths, plus an extended region accounting forlaonbertian surfaces. (b) Lowpass filtering in the pixel disien v induces lowpass filtering
in the spatial dimension. (c) Sampling in space alongleads to periodization in frequency along.

reasonable to assume thdt:, v) is a bandlimited function Figure 3(c) shows that we can sample the POF in space (i.e.
in the variablev. Using (4) and (5) we immediately obtainby placing cameras at discrete location aléhgvithout alias.

the following result. This induced filtering property also holds for sound sigraals
Proposition 1: Given the no self-occlusion condition (2)was shown in a study of thglenacoustidunction [18].
and suppose that Typically, the plenoptic functiop(¢, v) is captured by cam-

) eras withfinite pixel resolutionA,, along the pixel dimension
L(z,wy) =0, if |wy| > Br. ®) 4. Thus, previous analyses [6], [Blssumethat P(w;,w,) is

Then bandlimited in thew, dimension to|w,| < 7/A,. Based on
this assumption and using Proposition 1 and Figure 3(b), it
P(wi,wy) =0, if |w, — 2(w)wi| > B forallz.  (7) follows that the bandwidth of the POF depends only on the

Therefore, as shown in Figure 3(a), the spectral suppé?tnge of depthhs and tlhe plx_el resol(;Jtmn._ | it .
of the plenoptic functionp(¢,v) is contained between two Howev_er,t € actual continuous-domain plenoptic function
ﬁét’”) might not be bandlimited according to the camera

lines corresponding to minimum and maximum depths, pl . L L .

. . . resolution. In some applications, it might be of interestttady
an extended region accounting for non-Lambertian surfac S intrinsic bandwidth of the POE according to the undedyi
This key finding was first discovered by Chai et al. [6] for 9 Y

Lambertian surfaces and later extended by Zhang and thé:r?ne rather_ than the capt_urmg devices. In this Paper, we wa
. . 0 characterize the bandwidth of the P@{, v) according to
[7] for non-Lambertian surfaces. However, in both of these : : .
. - —— a simple but representative scene model that will be desatrib
previous works the derivations are approximations based on .
; ) X . ) . . IN the next section.
truncating windows”, in which the scene is approximated by
piece-wise constant depth segments and the truncatioct effelII
in the spectral domain is ignored. Here, we show that for no-
self-occlusion surfaces with bandlimited light radiantee X ) )
resulting POF has spectral suppestactly contained in the Secg{_‘dz Wg a_lssulme that the light r_adlat((as“ |s_res(l;,I’t of ?]
region specified by (7). Moreover, our analysis reveals tik?%n |m|tef S|gnar{(s) (f'g' tex_turﬁ |mage_?_ painte (;)_nt €
role of the surface slop€(x) as given in the second term inobJect surace, V(‘j’ ere h_ s(x)||s t re] curV|h|near fcoor _:_r;]ate.
(5). This term was ignored in previous analyses with corlsta@fe' s corresponds to the arc length) on the surface. That is
depth assumption. I(x) = f(s(x)).

This “bow-tie” shape spectral support of the PQR,v)
makes it possible to induceontinuous-domaidowpass fil-
tering in the spatial dimensiohvia induced filteringin the
pixel dimensionv. Generally, it is physically impossible to
realize continuous-domain filtering in the spatial dimensi t=ax(t,v) — v z(z(t,v)). (8)
since we donot have access to the POF in the continuous
domain oft¢, but rather only at discrete locations where we

have actual cameras. On the other hand, contmuous-don}%lnthe curvilinear coordinate on the surface. With these

lowpass filtering in the pixel dimension is possible by the : . A
optical system in the cameras. Because of the “bow-tie”esha,@appmgs’ we can relate the plenoptic functign, v) to the

spectral support of the POF, Figure 3(b) illustrates thaplass painted” signalf(s) on the object surface as
filtering in v induces lowpass filtering ihas well. As a result, p(t,v) = l(z(t,v)) = f(s(z(t,v)) = f(s(t,v)). (9)

SURFACE MODEL: SIGNALS PAINTED ON SURFACES
First, we restrict to Lambertian surfaces; iex,v) = I(z).

The surface coordinate is determined by the light ray
coordinate(t,v) asx = z(t,v) according to the geometric
mapping equation (1) as

With a slight abuse of notation, we writ€¢t, v) = s(x(¢,v))
r the composite mapping from light ray coordindtev)
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We study the bandwidth of the PQKt, v) by fixing either Again, suppose that the painted sigrfék) is bandlimited.
t or v. Note that fixingt in the POFp(t,v) corresponds to From the discussion at the end of the last section we note
considering an image captured by a fixed camera, wheré¢hat if the surface in our scene is flat, theft) is affine and
fixing v corresponds to considering signal recorded at a fixéoe plenoptic functiom(t) = f(s(¢)) is a uniformly stretched
pixel location by a moving camera. In both cases, we obtaiersion off(t). Thus, it follows immediately from the shifting
a time-warpedfunction of a bandlimited functionf(s(¢)) and scaling properties of the Fourier transform tfig(¢)) is
wheret ands denote a generic variable and warping functiorglso bandlimited. We are interested to know if there are any
respectively. Figure 4 depicts this generic case study ef thther surfaces that result in bandlimited plenoptic fusrcsi
POF. Time-warped bandlimited functions have been studied in
the signal processing literature. In [19], Clark conjeetuthat
/\/\/\/\ /\/\/\/\ when a bandlimited functiory is warped by a monotonic
_ function s, the resulting functior(f o s)(¢t) = f(s(t)) is also
pinhole bandlimitedif and only if s(¢) is affine. In [20], this conjecture
camera . )
- was proved for a large class eft), in particular fors(t) that
projection - i o )
on certain interval is a restriction of an entire functfobater,
' _ _ in [21], Clark’s conjecture was shown to be false by a peculia
Fig. 4. Mapping fromf(t) to (f o 5)(t) = f(s(t)) due to the pinhole cqnterexample constructed by Y. Meyer. However, that pape
camera projection. . . . .
also noted that it is not possible for a non-affine warping
function to preserve bandlimitedness in general. Unawére o
this line of work, in [22], we made the same conjecture on
the preservation of bandlimitedness under warping.

Fixing eitherv or ¢ and taking the derivative of (8) with
respect to the other variable, we get

Ox(t,v) 1 (10) The implication of the above result is that in general, the
o  1—v 2 (x) plenoptic function isnot bandlimited unless the surface is flat.
dx(t,v) () In the next sections we will study thessential bandwidth
v v ) (11) defined as the bandwidth where most of the signal energy

resides, of the plenoptic function for general smooth s@$a
Hereafter, for brevity, in the right-hand sides we writéor

x(t,v). The no-self-occlusion condition (2) implies that both
of these partial derivatives are positive f0E [—vmax, Vmax) V. BANDWIDTH OF TIME-WARPED FUNCTIONS

or within the field-of-view. This means that(¢,v) is a Let denoteg(t) = (f o s)(t) to be a time-warped function

strictly monotonic function in each coordinat@ndv. Using  hat models the plenoptic function as was described in Sec-
differential relationds = /dz? +dz? = /1+ (2/(2))2dz, tjon |II. Its Fourier transform is
we obtain the partial derivatives afwith respect tot and v

s 6o = [ sswyeta (14
ds(t,v)  ds 0x(t,v) /14 (2 (x))? 12 e
ot dz ot 1-vz(x) (12) Let F'(w) be the Fourier transform of (s). Then,
ds(t,v)  ds dz(t,v) z(z)/1+ (¢(x))? oo ‘
v dz ov 1—v2(x) (13) f(s) = % /_OO F(w)e’* dw. (15)

From (12), we see that if the surface is flat, z8x) is a

. ! . Substituting (15) into (14 btai
constant therds(t,v)/0t is a constant ok(t,v) is an affine ubstituting (15) into (14) we obtain

function int for each fixedv. Conversely, under the no-self- I jws(t) —jet

occlusion condition (2), ifs(¢,v) is affine for a fixedv then G(&) = o . Fw) /e e”>dt ) duw

it is easy to see that’(z) must be a constant, and thus the 1 [

surface must be flat. =5 F(w)K(§ w)dw, (16)
Finally, we note that both partial derivatives ofgiven in e

(12) and (13) are greater than 1. where K, (£, w) £ F,{e/**()} is the Fourier transform of

e/@s) The kernel functionk,(¢,w) characterizes how the
IV. BANDLIMITED PLENOPTIC FUNCTIONS warping functions broadens the spectrum d¢fin the warped

As noted in the introduction, to address the samplidfgnctiong = f o s. To see this effect, first consider the case
problem of the plenoptic function we need to study its sgctivhen s is an affine functions(¢) = a + bt. In this case we
support. In this section, we examine the bandlimitedness kave
the plenoptic function given in (9). In plenoptic sampliray f jew(atbt) jaw
IBR, the main variable of interest ts the camera position, as K6 w) = File } = 2me”*o(E — bw), (17)
it leads to conditions on how to place the cameras. So let ug _ . _ , -

. . . . e o An entire function is a function of complex variable that lisivative at
con5|der the situation Where the_ plxel pOSItK_DrIS f!xed, a_nd each point in the entire finite plane. In particular, bandtied functions are
for brevity we drop the variable in functions in this section. entire functions.
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which is concentrated along the line= £/b. Substitute (17) with appropriately choser;, € [tx,tr+1] and sufficiently

into (16) we get small segmentdt,tr+1]. Then the time-warped function
_ g(t) = f(s(t)) can be approximated by
o eﬂaﬁ/bF 13 ot
= — ~ € A~
©== ") 30 = £(3(0) (24)
p— / —

Thus, for the affine warping(t) = a + bt we can relate the = fls(te) (€)= te)) TOrt € [t i)
bandwidth of the warped function= f o s to the bandwidth =) Fs(tk) + 8 (&) ( — tr)) bi(), (25)
of f as k

BW, = |a| BW; = |s'| BW;. (18) whereby(t) is the indicator function of the intervady, t;11];
' ' ' i.e.bg(t) equals tal for ¢ € [tg, tx+1] and0 otherwise. Denote
Next, consider a more general situation in which the wargy (t) = f(s(tx) + s’ (&) (¢t — tr)), which is an affine warping.

ing functions deviates from an affine function as Then we can relate the bandwidth ff to the bandwidth of
} f as
s(t) = a+ bt + 5(1). (19) BW,, = |s'(k)| BW/.
Then the kerneK (¢, w) becomes Sinceby(t) is a rectangular function of lengtfty+1 — tx),
‘ o its Fourier transformBy,(w) is asinc function with essential
Ky (& w) = Fifel ettt . ¢dws®) bandwidth .
= 2meI (€ — bw) ke Fo{?5D). (20) eSS BW. =~

Consider a simple case where the deviatig) is an From (25) it follows thatG(w) = >k Fr(w) * Bi(w), and
oscillation function with a single frequency > 0, i.e. hence

5(t) = esin(ut). Using the following expansion
© (ut) J 9 &P essBW = max (|S’(§k)| BW; + %) . (26)
k+1 — Uk

@) = N g (z)elm, For the plenoptic function, typically the oscillation efis
n=-00 much smaller than the oscillation of. Therefore, a good

whereJ, (z) is then-th order Bessel function of the first kind,2PProximation off(s(t)) can be obtained fronf(5(t)) using
we have a piecewise linear approximation of(t) as in (23) with

maxy, 1/(tk41 —tx) < BWy. Thus, we can discard the second

Fi{ewesinuny — or Z To(ew) 806 — ). term on the right-hand side of (26) and obtain
n=—o0 essBW, ~ essBW, ~ (max|s’|) BWy,

The Bessel functiong,, (z) decay exponentially for suffi- which is the desired result (22). Note that this approxiorati
ciently largen and are negligible fofn| > |z| + 1. Thus, is exact for affine warping as shown in (18).
for 5(t) = csin(ut), the Fourier transformF;{e/~*()} is The bandwidth analysis of time-warped functions in this
essentially zero for frequendy| > |cuw| + u. Based on this section follows the bandwidth analysis of FM (frequency-
approximation, substituting back in (20) and then (16), e smodulation) signals in communication systems [23]. A samil

that the essential bandwidth ofis rule like (22) is called the Carson'’s rule in the communiati
systems literature. We note that both the Carson’s rule and
essBW, = (|b] + |cp|) BWy + p. (21) (22) are difficult to prove precisely, except for some pailtic

o ) _ cases, and thus they should be viewed as “rules of thumb”.
Note that in this case(t) = a+bt+csin(ut), we can write | the next sections, we will show that the rule (22) is

|6 + |ep| = max]s’|. Moreover, for the plenoptic function, gyite accurate and provides an effective mean to estimate th
typically the oscillation of the surfaceis much smaller than hanqwidth of plenoptic functions.

the oscillation of the painted texturg thereforep << BWy.
Furthermore, as noted at the end of Section lll, for plemopti VI. BANDWIDTH OF PLENOPTIC FUNCTIONS

. ) .
function|s’| > 1. Thus, from (21) we can write The result (22) from the last section reveals the role of the

essBW. — 1Y BW;. 29y Maximum absolute value of the derivatives of the curvilnea
W = (max|s) ! (22) coordinates on the bandwidth of the plenoptic function.
In words, the essential bandwidth of the time-warped fundhese maximum derivatives represent the worst cases of the
tion g(t) = f(s(t)) can be approximated by the product ofnultiplicative term in the bandwidth expansion of the POF as

the maximum derivative of with the bandwidth off. given in (22). From (12) and (13) we have
The rule (22) can be approximated for general warping ds(t,v) /1 + max|z'[2
functior_1 s ftzlsdfgllows._ Sinc_e tylpicallysf is ?_mooth, it can be max —o < T — v max|7/| (27)
approximated by a piecewise linear function I+ a7 P
ax 0s(t,v) < Zmax 1 + max|2’| (28)

§) B s(tr) + 5/ (&)t —tr) fort e [tetrs]  (23) v T 1— Vmaxmax|z/|
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With these maximum derivatives, together with the knowl- Figure 6(b) shows the resulting POF otarved wallwith
edge of the bandwidth of the painted signal (or textur€ = 20, R = 10, andx = 2. The examined ranges ofand
image) f on the object surface, we obtain essential bandwidthare: ¢ € [—3,+3], andv € [-0.35,+0.35] (with the focal
estimates for the POF using (22). Intuitively, the resu®8){ length normalized to 1, this is equivalent to using 50 mm lens
(28) imply that when varying camera positiagn the worse on a 35 mm camera). With these parameters, the surface depth
case of bandwidth expansion comes from the steepest slapén the rangez(z) € [10,13.76] and the surface slope is in
(with respect to the camera axis) on the object surface. Whigve rangez’(x) € [—1.25,1.25]. Plugging these values into
varying pixel positionv, the worst case happens when th€7)-(28) and (22), we obtain the following estimates foe th
surface is at the steepest point and furthest, and the pixekssential maximum frequencies Bfw;, w,) as
at the boundary of the field-of-view. These findings are also
noted in the literature on texture mapping and image warping w{™/(2m) = 5.7THz,

[24]. wy'™/(2m) = 78.6Hz.

I

These estimates agree well with the plot ®fw,, w,) for

Cl curved wall in Figure 6(d). Also note in the plot that the
spectral support of the POF is sandwiched between the lines
Wy = Zminwe aNdw, = zpa.wy as illustrated in Figure 3.

For comparison, Figure 6(a) and Figure 6(c) show the POF
and its spectrum for the same camera configuration and painte
texture, except the wall iflat at constant depth(x) = 11.5.
Comparing to thdlat wall case, the spectrum support of the
POF of thecurved wallis significantly broader, both in the
angle and the radial length of the cone-shape region ifitestr
in Figure 3. The angular broadening of the POF spectrum
is due to the varying of surface deptiz), as was noted
previously in [6]. However the radial broadening of POF
spectrum, which is due to the maximum surface slofie)
Can’“:era as indicated in (27)-(28), is only revealed in this work.

e

object surface

Fig. 5. The scene with aurved wallthat is used in numerical experiments.
VIl. BANDWIDTH OF SHEARED PLENOPTIC FUNCTIONS

To illustrate and validate these rules for estimating the
bandwidth of the POF we consider a synthetic scene as shoe‘\f
in Figure 5. Note that as before, all length measures
normalized so that the focal length (i.e. the distance betwe
andv axes) is equal to 1. In the scene, there ieved wallas
an arc of a circle with radiu® and center at distancg from
the origin on thez axis. A texture signaf (s) = sin(27xs) of
frequencyk is painted on the wall. For convenience, we als
specify a point on the object surface by the angleetween
the corresponding radial line with theaxis (see Figure 5).
Then

The results in the last section characterize the bandwidths
"the plenoptic functiorp(¢,v) in each dimensiort and v
aggparately For plenoptic sampling, such bandwidths are rele-
vant if we sample and reconstruct along each dimensimmd
v separately while fixing the other dimension. However, the
typical shapes of POF spectral supports as seen in Figuré 3 an
Figure 6(c-d) indicate that we can compact the POF spectrum
ore (and hence have less aliasing in sampling)nion-
separablyprocess the two dimensiorsand v. In particular,
using the knowledge of minimum and maximum depths,,

T () and zyax, and the property of POF spectral support as shown
R~ oM@ in Figure 3, optimalnon-separableeconstruction filters for
C — z(x) _ cos(a) (29) IBR were derived in [6], [7].
R An alternative approach to explore this property of the

s = aR. POF spectrum support in IBR using only 1D reconstruction
filter is as follows. Since the POF spectral support is skhnte
according to the depth rangshearingthe POF spectrum
as shown from Figure 7(c) to Figure 7(d) would make it
Substituting (29) into the geometric mapping equation (hore compact alongs; axis. Figure 7(a) and Figure 7(b)
and usingd to specify the pixel positiony = tan(6), we get jjlystrate the spatial supports of the corresponding fionst
t = Rsin(0) — (C' — Rcos(6)) tan(6). with spectra given in Figure 7(c) and Figure 7(d); namely,
] - ] the POF and its sheared version. More precisely, the desired
From this we can express the curvilinear coordin@®n shearing operator is obtained by the following change of
the object surface through the light ray coordinates) as ygriable in the frequency domain
(noting § = tan—1(v))

S (Sm_l (tcos(@) + Csm(e)) ~ 9) @) { Wi = wi — wy/ 20,

It follows that
2'(z) = tan(a).

R Wy! = Wy
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(a) Flat wall:p(t, v)

w /(2m)

2 4 6

w/(2m

(c) Flat wall: P(wt,wy)

(b) Curved wall:p(t, v)

wV/(ZT[)

” 2 2 4 6

mt/€2n)

(d) Curved wall: P(w¢, wy)

Fig. 6. Examples of the plenoptic functigr(¢, v) and its Fourier transfornP(w, w,) for flat and curved walls.

The corresponding change of variable in the space domaip, vy) by interpolating along the line (31). From (1), we see

is
t=t,
v =v+t/z2.

{

Geometrically, this shearing operator maps, in the frequen

domain, the linew, = zow; into the w, axis [i.e. from

Figure 7(c) to Figure 7(d)]; or equivalently, in the spac

domain, it maps the axis into the linev’ = t'/z, [i.e. from
Figure 7(a) to Figure 7(b)]. Therefore, with a suitable ckoi

of zp such thatzy,in < 20 < zmax, the spectrum of sheared

POF is more compact along thg. axis. The optimal depth
zp suggested in [6] satisfies

1 1 ( 1 1
+
Zmin Zmax

Z0 2
which can be obtained through Figure 3.
With the compact spectrum along the, axis we can
achieve high quality reconstruction (i.e. less aliasirm)the
sheared POF by simply reconstructing alah@xis for each

that all corresponding light rayét, v) that satisfy the line
equation (31) intersect with the light rayo,vy) at a same
point of depthzy.

The Lumigraph [13] system employs the same reconstruc-
tion strategy which they calllepth correctioninterpolation.
The authors of [13] refer to the line (31) as aptical flow
fine (where the object surface “seen” by the light @y, vo)
is assumed to be at depth), and they expect the plenoptic
function to be smooth along the optical flow lines. Their
experiments show that reconstruction by depth-correated i
terpolation along the optical flow lines has significantlgtner
quality compared to uncorrected interpolation (i.e. iptéate
along same pixel lines = ).

We can characterize the smoothness of the plenoptic func-
tion along the optical flow line (31) by estimating the band-
width of the 1D slice function of the POF along this line
(which is also the 1D function along the liné = v of the
sheared POF). The corresponding derivative for the barttwid

fixedv’. In other words, we interpolate the sheared POF aloegpanding factor in (22) is thdirectional derivativeof s along
lines v’ = v|. It is easy to see that corresponding to the linthe line (31) with the unit vecton = (1, —1/z). Using (12)-
v’ = v} in the sheared domain is the following line in thg13), we obtain the derivative of in this direction as

original domain [see Figure 7(a-b)]

1}—|—t/20:1)0+t0/20. (31)

Therefore, equivalently, we can obtain high quality recon-

struction of the original plenoptic functign(¢, v) at a location

Dus(t,0) = us 8522 v) w 85((921})
_ (A =z(@)/20) V1+ (¢ (2))?
B 1—v2(x) ' (32)
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v
/
v+t/20 = vo + to/ 2 v
vl =1t/z
/ /
V=0
\‘(t{’l}o) 0 o
t Y
(a) Plenoptic function (b) Sheared plenoptic function
Wy Wy
Wy = Zow4 [ / ==
) =
’/
(c) Spectrum of POF (d) Spectrum of sheared POF

Fig. 7. Sheared spectrum of the plenoptic function by a chasfgvariable:w;, = w¢ — (1/20)ww, wl, = wy. With approriate choice ofy, the sheared
spectrum is most compacted near thg axis.

Comparing D, s in (32) to ds/0t in (12), we see that, surface is flat. We then derive a simple rule to estimate the
with a suitable choice ofy such aszy = (zmin + 2max)/2, €ssential bandwidth, defined as the bandwidth where most of
the absolute value of the derivative of in the direction the signal energy resides, of the plenoptic function fos thi
u = (1,—1/z) is smaller than the one in the directioh 0). model. This essential bandwidth is estimated as the product
Hence, according to (22), the bandwidth of the POF along thé the bandwidth of the painted signal times the maximum
optical flow line (31) is smaller than the bandwidth along thabsolute derivative of the surface curvilinear coordiredtang
same pixel linev = vy. a certain direction. Our analysis reveals that, in additithe

Figure 8 shows example slices of the POF for tueved maximum and minimum surface depths, the bandwidths of the
wall scene described in Section VI along the same pixel lin@enoptic function also depend on the maximum surface slope
v = v and optical flow line (31) withtg = v9 = 0 and and maximum frequency of the painted signal. By treating the
zo = 11.5. We see that the maximum frequency of the POPOF with a unifying formalism based on multidimensional
slice along the optical flow is much smaller compared to thsignal processing, we can verify several important results
one along the same pixel line, which confirms the advantageluding induced filtering along the camera dimensionptlde
of depth-corrected interpolation in IBR. Using (12) and)(32correction interpolation in Lumigraph, and quantifyingeth
and the surface depth and slope ranges for curved wall sceeeessary sampling rates. Numerical results show that the
found in Section VI, we obtain estimates for the maximumesulting estimated bandwidths of plenoptic functions are
frequency for these two slices of the POF @8 Hz and accurate and effectively characterize the performancenafe
0.6 Hz, respectively. These estimates closely characterize ttased rendering algorithms.
function plots in Figure 8.

VIIl. CONCLUSION Acknowledgments. The late David Slepian (1923 - 2007)
In this paper we studied the bandwidth of the plenoptend his seminal paper [25] have been inspirations for us in
function of a simple scene model where a bandlimited signadmpleting this paper. We also thank Nitin Aggarwal (UIUC)
is painted on a smooth surface. We show that in general tioe the helpful discussions on the bandwidth of time-warped
plenoptic function for this model isot bandlimited unless the functions.
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Fig.

p(t.0)

@

P(t-tiz))

(b)

8. Slices of the plenoptic function of the curved walkse along:

(a) same pixel line. (b) optical flow line withp = 11.5.
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