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Generic Invertibility of Multidimensional FIR Filter
Banks and MIMO Systems
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Abstract— We study the invertibility of M -variate Laurent
polynomial N × P matrices. Such matrices represent multi-
dimensional systems in various settings such as filter banks,
multiple-input multiple-output systems, and multirate systems.
Given an N × P Laurent polynomial matrix H(z1, ..., zM ) of
degree at mostk, we want to find a P ×N Laurent polynomial
left inverse matrix G(z) of H(z) such that G(z)H(z) = I.
We provide computable conditions to test the invertibility and
propose algorithms to find a particular inverse.

The main result of this paper is to prove that H(z) is
generically invertible when N −P ≥ M ; whereas whenN −P <
M , then H(z) is generically noninvertible. As a result, we
propose an algorithm to find a particular inverse of a Laurent
polynomial matrix that is faster than current algorithms kn own
to us.

Index Terms— Left Invertibility, Perfect Reconstruction,
Gröbner Bases, Multidimensional Multirate Systems, Generic
Property.

I. INTRODUCTION

During the last two decades, one dimensional multirate
systems in digital signal processing have been thoroughly
developed. Due to the high demand of multidimensional
processing including image and video processing, volumetric
data analysis, and spectroscopic imaging, multidimensional
multirate systems require more extensive study. Perfect re-
construction, which guarantees that an original input can be
perfectly reconstructed from the outputs, is one key property
of a multidimensional multirate system.

In a multidimensional multirate system, a digital signal
is split into several channels and processed with different
sampling rates. The most popular multirate systems are filter
banks shown in Fig. 1(a). In the analysis part, a digital input
signal is filtered and then downsampled, generating multiple
outputs at the lower rates. In the synthesis part, the multiple
outputs are upsampled and then filtered to reconstruct the
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original signal. Using the polyphase representation in thez-
domain [1], [2], we can represent the analysis part as an
N × P matrix H(z) (shown in Fig.1(b)) with entries in a
Laurent polynomial ringC[z1, z2, ..., zM , z1

−1, ..., zM
−1]. In

this caseM is the dimension of signals,N is the number
of channels in the filter bank, andP is the sampling factor
at each channel. An application of this setting may arise in
multichannel acquisition. In such an application we collect
data about an unknown multidimensional signalX(z) as
output of the analysis part in Fig. 1(a). The acquisition system
(filters Hi(z) and sampling matrixD) is fixed and known
beforehand. The objective is to reconstructX(z) with a
synthesis partG(z). The existence of a synthesis part becomes
a purely mathematical question.

Therefore, our first problem is to consider whether there
exists aP × N matrix G(z) over a Laurent polynomial ring
C[z1, z2, ..., zM , z1

−1, ..., zM
−1] for which G(z)H(z) = IP

whereIP is theP × P identity matrix.
One dimensional perfect reconstruction finite impulse re-

sponse (FIR) filter banks have been investigated in several
studies [3], [4], [5]. The Euclidean algorithm plays a key role
in the matrix inverse problem for one dimensional perfect
reconstruction FIR filter banks [4] since it can be used to
find the GCD of a family of polynomials. For multivariate
polynomials, there is a GCD (since the ring is a unique
factorization domain) but the GCD is not necessarily a linear
combination of the polynomials. The theory of Gröbner bases
has been introduced to compute with multivariate polynomials
[6], [7] and the theory is widely used in multidimensional
signal processing [8], [9], [10], [11], [12], [13]. Methodsusing
Gröbner bases techniques for testing the invertibility ofand
for computing a particular inverse of anN × 1 multivariate
polynomial matrixH(z) were proposed in [14], [15]. For an
N × P multivariate polynomial matrixH(z) whereP > 1,
adjoint matrix methods are employed in [14], [16]. Park in
[17] provides a method to find the inverse of a Laurent
polynomial matrixG(z). His method involves transforming
Laurent polynomials into polynomials by multiplying by a
series of elementary matrices. In this paper, we offer a simpler
and more direct algorithm to compute a particular Laurent
polynomial inverse. We can then generate all inverses from a
particular inverse. In this set of inverses, one find an optimal
set of synthesis filters according to some design criteria [11],
[15], [18].

The second problem is: When is the probability for the
existence of an inverse for a given system high? Rajagopal
and Potter [14] and Zhou and Do [19] have investigated
this problem and made several conjectures. We investigated
systems by varyingM , N and P . In experiments, we found
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Fig. 1. Example system represented by a polynomial matrix. (a) A multidimensionalN -channel oversampled filter bank:Hi and Gi are analysis and
synthesis filters, respectively;D is anM × M sampling matrix with sampling rateP = |det D| ≤ N . (b) Polyphase representation:H(z) andG(z) are
analysis and synthesis polyphase transformation matrices, respectively;{li} is a basis of the lattice generated by the sampling matrixD.

that whenM − N ≥ P , an inverse “almost surely” exists.
On the other hand, whenM − N < P , an inverse “almost
surely” does not exist. To make precise the study of this inverse
existence problem, we employ measure theory [20] and the
concept of “holds generically” [7].

The paper is organized as follows. In Section II, we show
how to verify the invertibility of a Laurent polynomial matri-
ces. In Section III, we propose algorithms to find a particular
inverse based on the Gröbner bases computation. Next, we
characterize the set of all inverses. In Section IV, we prove
that whenN −P ≥ M , then a polynomial matrix of degree at
mostk is generically polynomial (resp.: Laurent polynomial)
left invertible; whereas whenN −P < M , then a polynomial
matrix of degree at mostk is generically polynomial (resp.:
Laurent polynomial) noninvertible. Based on this result, we
present a fast algorithm to find a particular inverse in Section
V. We conclude with a summary in Section VI.

II. M ATHEMATICAL CONTEXTS

A. (Left) Inverse Polynomial Matrix Problem

We use boldface letters to denote vectors, or matrices. Let
z be anM -dimensional complex variablez = (z1, ..., zM ) in
CM . For n = (n1, ..., nM ) ∈ ZM , we define the monomial
zn =

∏M

i=1 zni

i . In this paper, we will always assume that
N, P , andM are positive integers.

Definition 1 (Polynomial or Laurent Polynomial Matrix):
An N × P matrix H(z) is said to be apolynomial matrix
(resp.: Laurent polynomial matrix) if every entry is a
polynomial (resp.: Laurent polynomial).

Definition 2 (Left Invertible):An N×P polynomial (resp.:
Laurent polynomial) matrixH(z) is said to bepolynomial
(resp.: Laurent polynomial) left invertibleif there exists aP ×
N polynomial (resp.: Laurent polynomial) matrixG(z) such
that

G(z)H(z) = IP . (1)

OtherwiseH(z) is said to bepolynomial (resp.: Laurent
polynomial) left noninvertible.
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The discussion of polynomial (resp.: Laurent polynomial)
left invertible can also apply to polynomial (resp.: Laurent
polynomial) right invertible. To avoid repetition, throughout
the paper we use the word “invertible” to represent either
polynomial left invertible or Laurent polynomial left invertible.
It will be clear in the context whether it is polynomial left
invertible or Laurent polynomial left invertible. We will also
restrain from using the pedantic “(resp.: Laurent polynomial)”
when it is understood in the context.

Consider anN × 1 matrix H(z) over C[z] whereHi(z) is
thei-th row ofH(z). If the greatest common divisor (GCD) of
{H1(z), ..., HN (z)} is 1, then the Bezout identity problem has
a solution [21]. We can use the Euclidean algorithm to find
the GCD and also a set of polynomials{G1(z), ..., GN (z)}
[22] such that

N
∑

j=1

Gj(z)Hj(z) = 1.

However, the univariate GCD criterion and Euclidean algo-
rithm fail for multivariate polynomials. But the multivariate
membership problem can be solved by using Gröbner bases
[6], [23]. Briefly, the theory of Gröbner bases implies thatany
set of generators of an ideal or module has a uniquereduced
Gröbner basisfor a given ordering. This basis is obtained by
using Buchberger’s algorithm [24].

In particular, suppose{b1(z), ..., bn(z)} is a Gröbner ba-
sis of a C[z]-submodule〈r1(z), ...., rN (z)〉 generated by
r1(z), ..., rN (z) [25] where ri(z) belongs toC[z]P . Then
there exists ann × N transformation matrix{Wij(z)} such
that

bi(z) =

N
∑

j=1

Wij(z)rj(z). (2)

Buchberger’s algorithm is implemented in most computer
algebra software systems, such as Singular, Macauley2, Maple,
and Mathematica, and hence the computation of Gröbner bases
is available in these systems.

B. Criteria for Left Invertibility

To conclude a general fact between the Gröbner bases and
invertibility of a polynomial matrix, we have the following
proposition. This generalizes Proposition 2 from [15].

Proposition 1: SupposeH(z) is an N × P polynomial
matrix. Let S = 〈h1(z), ...., hN (z)〉 be theC[z]-submodule
of C[z]P generated by the rowshi(z) of H(z). ThenH(z)
is invertible if and only if the reduced Gröbner basis ofS is
{ei}i=1,...,P whereei is the i-th row of theP × P identity
matrix.

Proof: SupposeH(z) is invertible. Then there exist
G(z) = (gij(z)) such that

G(z)H(z) = I.

Then

ei =

N
∑

j=1

gij(z)hj(z) (3)

for i = 1, ..., P . According to the definition of a Gröbner
basis [6, p.121],{ei}i=1,..,P is a Gröbner basis ofS. It is a

reduced Gröbner basis since theei are linearly independent.
By the uniqueness of reduced Gröbner basis with respect to a
given term order,{ei}i=1,..,P is the reduced Gröbner basis of
S.

Suppose on the other hand that the reduced Gröbner basis
of S is {ei}i=1,..,P . Then there exist some{gij(z)} satisfying
(3). Let G(z) = (gij(z)). Then

G(z)H(z) = I.

ThusH(z) is invertible.

Example 1: Is H(z1, z2) =









1 3z2

2z1 + 1 0
3 z1

3z2 5









invertible?

We can use the softwareSingular [26] to implement the above
result.

1: >ring R=0,(z(1),z(2)),dp; .
R is a ring with 2 variables;dp specifies degree reverse
lexicographical ordering

2: >matrix H[4][2];
3: >H=1,3 * z(2),2 * z(1)+1,0,3,z(1),3 * z(2),5;
4: >print(H);
5: 1,3 * z(2),
6: 2* z(1)+1,0,
7: 3,z(1),
8: 3* z(2),5
9: >module S=transpose(H); . S is the module

generated by rows ofH(z1, z2)
10: >option(redSB); . Computes a reduced standard

basis in any standard basis computation
11: >print(std(S)); . Returns the reduced Groebner

basis by using above option
12: 1,0,
13: 0,1

By Proposition 1, we know thatH(z1, z2) is invertible.
The results from algebraic geometry and Gröbner bases deal

only with polynomial matrices. To be applicable for systems
with general FIR filters, not just causal or anticausal filters, we
need to extend the results from polynomial matrices to Laurent
polynomial matrices. One method is to multiply both sides of
(1) with a monomial of high enough degree. ThusH(z) is
Laurent polynomial left invertible if and only if there exist a
P × N polynomial matrixĜ(z) such that

Ĝ(z)H(z) = z
k
IP (4)

for some integer vectork. But finding a suitable integer vector
k might require an extensive search. However, by generalizing
Theorem2 from [15], we have a simple algorithm to determine
whether the given Laurent polynomial matrix is invertible or
not1.

Proposition 2: SupposeH(z) is anN × P Laurent poly-
nomial matrix. Consider the(N + P ) × P matrix

H
′(z, w) =

(

zmH(z)
diag(1 − z1z2...zMw)

)

(5)

1Theorem2 from [15] can be proved directly by using the ”Rabinowitch
trick”. See also [27].
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wherem ∈ NM is such thatzmH(z) is a polynomial matrix,
w is a new variable, anddiag(y) is a P × P diagonal matrix
with elementy on the diagonal. ThenH(z) is Laurent poly-
nomial left invertible if and only ifH ′(z, w) is a polynomial
left invertible matrix.

Proof: If H(z) is Laurent polynomial left invertible,
thenzmH(z) is also Laurent polynomial left invertible. Then
there exists a polynomial matrixG(z) = (gij(z)) satisfying
(4). Among thesek, pick one for whichm′ ∈ ZM

+ is the
least integer vector. Letm0 be the maximal entry ofm′ =
{m1, ..., mM}. If m0 = 0, then H(z) is polynomial left
invertible and so isH ′(z, w). Otherwisem0 is positive. Now
let

g′ij(z, w) =











wm0
∏M

k=1
z

m0−mk

k
gij(z), i = 1, ..., P ; j = 1, ...,N ;

∑m0−1
k=0 (

∏M

l=1 zk
l )wk, if i = j − N ;

0, otherwise.

Let G′(z, w) = (g′ij(z, w)) be the correspondingP ×(P +N)
matrix. Then by a straightforward computation, we can con-
clude thatG′(z, w) is a polynomial left inverse ofH ′(z, w).

Now supposeH ′(z, w) is polynomial left invertible. There
exists G

′(z, w) such that G
′(z, w)H ′(z, w) = I with

G
′(z, w) =

(

g′ij(z, w)
)

. Set

G(z) = (z−mg′ij(z,

M
∏

k=1

z−1
k ))i=1,...,P ; j=1,...,N .

Then we haveG(z)H(z) = I and G(z) is a Laurent
polynomial matrix. HenceH(z) is Laurent polynomial left
invertible.

Example 2: Is H(z) =

(

z1 z1

z2
2 + 3 z2

2 + 1

)

invertible?

Clearly it is not polynomial invertible because the determinant
is zero whenz1 is zero. To verify that the matrix is Laurent
polynomial left invertible, we need to introduce a new vari-
able and theH ′(z, w) from (5) and test the invertibility of
H

′(z, w).

1: >ring R=0,(z(1),z(2),w),dp;
2: >matrix H’[4][2];
3: >H’=z(1),z(1),z(2)ˆ2+3,z(2)ˆ2+1,

1-z(1) * z(2) * w,0,0,1-z(1) * z(2) * w;
4: >print(H’);
5: z(1),z(1),
6: z(2)ˆ2+3,z(2)ˆ2+1,
7: -z(1) * z(2) * w+1,0,
8: 0,-z(1) * z(2) * w+1
9: >module S=transpose(H’);

10: >option(redSB);
11: >print(std(S));
12: 1,0,
13: 0,1

This implies thatH(z) is Laurent polynomial left invertible.

III. PROPOSED ALGORITHMS

A. Computation of Left Inverses

In this section we introduce two new algorithms to generate
an inverse matrix of a given matrix if the matrix is invertible.

These algorithms use Gröbner bases and are based on Propo-
sition 1 and Proposition 2.

Algorithm 1 Particular Polynomial Inverse
The computational algorithm for a polynomial left inverse
matrix
Input: N × P polynomial matrixH(z) over C[z1, ..., zM ]
Output:P × N polynomial matrixG(z), if it exists

1: compute the reduced Gröbner basis of{h1(z), ..., hN (z)}
wherehi(z) is a row ofH(z) and the associated trans-
formation matrix{Wij(z)} as defined in (2)

2: if the reduced Gröbner basis is{ei}i=1,..,P , then output
(Wij(z))

3: elsethere is no solution
4: end if

Algorithm 2 Particular Laurent Polynomial Inverse
The computational algorithm for a Laurent polynomial left
inverse matrix
Input: N × P Laurent polynomial matrixH(z) with M
variables
Output:P × N Laurent polynomial matrixG(z), if it exists

1: multiply H(z) by a common monomialzm such that
H

′(z, w) is polynomial matrix from Proposition 2
2: call Algorithm 1 with inputH ′(z, w)
3: if the output of Algorithm 1 isG′(z, w), then output

z−m(G′

ij(z,
∏M

k=1 z−1
k ))i=1,...,P ; j=1,...,N

4: elsethere is no solution
5: end if

Example 3:Find an inverse of H(z1, z2) =








1 3z2

2z1 + 1 0
3 z1

3z2 5









. By Example 1, we know thatH(z1, z2)

is invertible.
To calculate a left inverse of polynomial matrix, we have the
following:

1: >matrix U[2][2]=unitmat(2); . U is the2 × 2
identity matrix

2: >matrix G[2][4];
3: >G=transpose(lift(transpose(H),U)); . lift

is function that returns a transformation matrixL where
U = HT ∗ L

4: >print(G);
5: 2/179z(1),18/179z(2)-1/179,-6/179z(2)+

60/179, -12/179z(1) ,
6: 12/179z(1),3/895z(2)-6/179,-36/179z(2)+

2/179, -2/895z(1)+1/5
7: >print(G * H);
8: 1,0,
9: 0,1

ThusG(z1, z2) is a left inverse ofH(z1, z2).
Example 4:Find an inverse of H(z) =

(

z1 z1

z2
2 + 3 z2

2 + 1

)

. By Example 2, we know thatH(z) is
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Laurent polynomial left invertible. To calculate a left inverse
usingSingular:

1: >matrix U[2][2]=unitmat(2);
2: >matrix G’[2][4];
3: >G’=transpose(lift(transpose(H’),U));
4: >print(G’);
5: -1/2 * z(2)ˆ3 * w-1/2 * z(2) * w,1/2 * z(1) * z(2) * w,

1,0,
6: 1/2 * z(2)ˆ3 * w+3/2 * z(2) * w,-1/2 * z(1) * z(2) * w,

0,1
7: >print(G’ * H’);
8: 1,0,
9: 0,1

According to Algorithm 2, G(z) =
(

− 1
2z−1

1 z2
2 − 1

2z−1
1

1
2

1
2z−1

1 z2
2 + 3

2z−1
1 − 1

2

)

is a left inverse ofH(z).

Rajagopal and Potter explore the computation of the syn-
thesis part of anM -variate perfect reconstruction FIR filter.
Their algorithm [14], [16] first computes every maximal minor
of H(z) and the corresponding adjoint matrix. Then it uses
them to compute an inverse ofH(z). The size of the set
of maximal minors is

(

N

P

)

, which could be large ifN − P
is large. When this is the case, we find in practice that the
algorithm is extremely slow. In order to avoid the problem
that the computation of maximal minors poses, our Algorithm
2 computes an inverse directly by using the computation of the
reduced Gröbner bases for modules. Park [17] also presentsan
algorithm. To find the inverse of Laurant polynomial matrices,
Park transforms the Laurent polynomial matrix into a polyno-
mial matrix by multiplying by a series of elementary matrices.
Our approach simply transforms Laurent polynomials into
polynomials by multiplying by a large enough monomial.
Therefore our approach is simpler and provides a closed form
formula to compute an inverse.

When one designs a filter bank, one would like to estimate
the degree of the entries in the inverse matrices. Caniglia et al.
[28] propose an upper bound on the degree ofN×N invertible

matrix K(z) such thatK(z)H(z) =

[

IP

0

]

and the degree

bound ofdeg(K(z)) is optimal in order.
Proposition 3: [28] Assume thatH(z) is anN ×P invert-

ible matrix in M variables. Letdeg(H(z)) be the maximum
of the degrees of the entries ofH(z) and letd = deg(H(z))+
1. Then there exists anN × N invertible matrixK(z) such
that

K(z)H(z) =

[

IP

0

]

anddeg(K(z)) is (Pd)O(M).
This suggests that the maximum degree of the entries of the
P × N inverse matrixG(z) is also less than or equal to
(Pd)O(M).

B. Characterization of Inverses

Algorithms 1 and 2 do not guarantee that the inverse would
be well behaved. In this section, we refer to some results that
characterize the set of all inverses. Once we have a particular
inverse, we can parametrize the set of all inverses.

First we make a simple observation. Supposeg, h are
elements in some ring for whichgh = 1 while hg 6= 1. Then
hghg = hg and (1 − hg)h = 0. If a is any element, then
a(1 − hg)h = 0 and hence

(g + a(1 − hg))h = 1.

Thus if hg 6= 1, then we can find infinitely many left
inverses toh. With this in mind we have the following general
statements.

Lemma 1 (Zhou):[19], [29] SupposeH(z) is an N × P
polynomial matrix andG̃(z) is a P × N polynomial matrix
such thatG̃(z)H(z) = I. Then G(z) is an polynomial
inverse matrix ofH(z) if and only if G(z) can be written as

G(z) = G̃(z) + A(z)(I − H(z)G̃(z)) (6)

whereA(z) is an arbitraryP × N polynomial matrix.
Theorem 1 (Park):[30] SupposeH(z) is anN × P poly-

nomial matrix andG̃(z) is a P × N polynomial matrix such
that G̃(z)H(z) = I. Let h1, h2, ..., hN be row vectors of
H(z). ThenG(z) is an polynomial inverse matrix ofH(z)
if and only if G(z) can be written as

G(z) = G̃(z) + A(z)Syz(h1, h2, ..., hN ) (7)

whereA(z) is an arbitrary polynomial matrix and Syz is the
syzygy [6] of {h1, h2, ..., hN}.

Remark 1:Both of these theorems hold when polynomial
is replaced by Laurent polynomial.

Remark 2:Note that since(I−H(z)G̃(z))H(z) = 0, the
element(I − H(z)G̃(z)) is a syzygy of{h1, . . . , hN}.

Zhou’s method provides a simple characterization of in-
verses which is easy to implement. Park’s method is more
complicated. However the matrix size of the free parameter
A(z) in Lemma 1 isP×N , while the smallest possible matrix
size ofA(z) in Theorem 1 isP × (N −P ) in theory. Though
syzygy provided bySingular does not necessary attain this
optimal size, the matrix size forA(z) obtained in Park’s
method is in general smaller than Zhou’s method.

Example 5:Let beH(z) =









z1 z1 + 1
z2 + z1 z1

3 z1 + 2
z1 z2









. Find the

size ofA(z1, z2) from Theorem 1 usingSingular.
1: >ring R=0,(z(1),z(2)),dp;
2: >matrix H[4][2];
3: >H=z(1),z(1)+1,z(2)+z(1),z(1),3,z(1)+2,

z(1),z(2);
4: >option(redSB);
5: >matrix S=transpose(syz(transpose(H)));

. wheresyz computes the syzygy
6: > print(S);
7: S[1,1],S[1,2],z(2)ˆ2+z(1),z(1)- z(2)-3,
8: S[2,1],z(1)ˆ2-z(1)-3,z(1) * z(2)+z(1)+z(2),

0,
9: S[3,1],S[3,2],z(2)ˆ3-z(1)-z(2),-z(2)ˆ2-

z(1)-4 * z(2)

whereS[i, j] is some long polynomial expression. Thus the
required free parameterA(z1, z2) in Theorem 1 is a2 × 3
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matrix. It is not the optimal matrix size, namely2 × 2. But
the size ofA(z1, z2) in Zhou’s method is2 × 4. Therefore
applying Park’s method usingSingular would lead to smaller
size ofA(z) in this case.

In the set of all inverses, an optimal set of synthesis filters
can be obtained according to some design criteria [11], [15],
[18].

IV. GENERIC INVERTIBILITY

A. Lebesgue Measure and Generic Property

When designing filter banks, an important question is how
likely it is that the synthesis part of the perfect reconstruction
filter banks exists. If it does not exist, then in general we are
not able to reconstruct the original signal.

In [19], Zhou and Do made the following conjecture.
Conjecture 1:SupposeH(z) is an M -variate N × P

polynomial (resp.: Laurent polynomial) matrix withN ≥ P .
If N − P ≥ M , then it is “almost surely” polynomial
(resp.: Laurent polynomial) left invertible. Otherwise, it is
“almost surely” polynomial’ (resp.: Laurent polynomial) left
noninvertible.

Rajagopal and Potter made another conjecture related to
“almost surely” invertible in their paper [14].

Corollary 6 in [14]: SupposeH(z) is anN ×P M -variate
polynomial matrix with N > P . If

(

N

P

)

> M , then it is
“almost surely” invertible.

Unfortunately, Corollary 6 in [14] is not correct. Please refer
to Zhou’s thesis [29] for more details.

Suppose the conjecture posed by Zhou and Do is true. If
we design filter banks such thatN − P ≥ M , then “almost
surely” there exists a synthesis part of the filter banks which
is able to reconstruct the original signal perfectly.

However, Zhou and Do did not give a precise definition of
“almost surely”. In order to have the appropriate language,we
employ the concept of Lebesgue measure and the concept of
“hold generically”.

In the 2-dimensional plane, it is obvious that any “simple”
line (i.e. not a locally space filling curve) has zero area. In3-
dimensional space, we also know that any “simple” surface
has zero volume. To generalize this property, we have the
following lemma.

Lemma 2: [31, p.9] Let f be holomorphic (which means
infinitely differentiable) in the domainD ⊂ CM , and suppose
f is not identically zero. ThenλM ({z ∈ D | f(z) = 0}) = 0
whereλM denote the2M -dimensional Lebesgue measure.

Definition 3 (Generic):[32] A property is said tohold
generically for polynomials f1, .., fn of degree at most
k1, ..., kn if there is a nonzero polynomialF in the coefficients
of the fi such that the property holds forf1, ..., fn whenever
the polynomialF (f1, ..., fn) is nonvanishing.

Intuitively, a property of polynomials is generic if it holds
for “almost all” polynomials.

Example 6: [32] The property “f(x) = c2x
2 +c1x+c0 has

two distinct solutions” is generic.
Proof: Let F be a polynomial of the coefficients off =

c2x
2 + c1x + c0 given by

F = c2(c
2
1 − 4c2c0)

SupposeF (f) is nonzero (i.e.c2(c
2
1 − 4c2c0) 6= 0). Then

c2 6= 0 and c2
1 − 4c2c0 6= 0. So f has two distinct solutions.

Therefore by the above definition,f(x) = c2x
2 +c1x+c0 has

two distinct solutions generically.
Lemma 3: If a property of polynomials of degree at most

k1, ..., kn in M variables is generic, then the coefficient space
C of polynomials whose polynomials failed to satisfy the
property is measure zero and nowhere dense.

Proof: By the definition of hold generically, there exists
a nonzero polynomialF in the coefficients of thefi such
that the property fails to satisfy forf1, ..., fn for which the
polynomial F (f1, ..., fn) is vanishing. LetRi be the set of
M -variate polynomials of degree less than or equal toki. By
lemma 2,

λl({(f1, ..., fn) ∈

n
∏

i=1

Ri | F (f1, ..., fn) = 0}) = 0

where l =
(

k1+M
M

)

+ ... +
(

kn+M
M

)

is the dimension of the
coefficient space. Thus, the coefficient spaceC of polynomials
whose polynomials failed to satisfy the property is measure
zero. To show the set is nowhere dense, it is equivalent to
show that the closure of the set contains no open set. Suppose
it contains an open ballB(ε) with some radiusε > 0.
Since F−1({0}) is a closed set,C is also in F−1({0}).
Thus,F−1({0}) contains the open ballB(ε). However, this
contradicts the fact thatF−1({0}) is measure zero. Therefore,
the coefficient space of polynomials whose polynomials failed
to satisfy the property is nowhere dense.

The immediate consequence is that iff1, ..., fn are drawn
independently from a probability distribution with respect to
the Lebesgue measure, the property off1, ..., fn holds with
probability one. Furthermore, supposẽf0, ..., f̃n satisfies the
property. Since the coefficient spaceC of polynomials whose
polynomials failed to satisfy the property is nowhere dense,
there exists an open ballB(ε) aroundf̃0, ..., f̃n for someε > 0
such that the property is satisfied within the open ballB(ε) .
This shows that the system with the property is robust [33].

B. Generically Invertible whenN − P ≥ M

To prove our main theorem in this section, we need to
employ the resultant of the polynomials.

Theorem 2 (Resultant):[7, p.80] If we fix positive degrees
k0, ..., kn, then there is a unique nonzero polynomial called the
resultant RES(k0,...,kn) ∈ C[

⋃n

i=1{uij}j=1,...,(ki+M

M
)] where

the variablesuij correspond to the coefficients ofi-th poly-
nomial. Then we have the following property:
If F0, ..., Fn ∈ C[x0, ..., xM ] are homogeneous of degrees
k0, ..., kn, thenF0, ..., Fn have a nontrivial common zero over
C if and only if RES(k0,...,kn)(F0, ..., Fn) = 0.

Now we can translate the first half of Conjecture 1 into the
following mathematical framework.

Theorem 3:If N − P ≥ M and k > 0, then anN × P
polynomial M -variate matrixH(z) of degree at mostk is
generically polynomial left invertible.

Proof: The strategy of this proof is to find a nonzero
polynomialF such thatF (H(z)) = 0 for every noninvertible
matrix H(z) of degree at mostk.
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Let Z = (z0, ..., zM ). If f(z) = f0(z)+f1(z)+...+fl(z) is
the decomposition of the polynomialf(z) into sums of forms
fi(z) of degreei, then the homogenizationf(Z) of f(z) of
degreek is defined to bef(Z) = zk

0f0(z) + zk−1
0 f1(z) +

...+ zk−l
0 fl(z). Let hi(Z) be theith row of anN ×P matrix

H(z). Let ti−1(Z) be the determinant of theP ×P submatrix
containinghi(Z), hi+1(Z), ..., hi+P−1(Z). Defineφ to be a
function such that

H(z) 7→ (t0(Z), t1(Z), ..., tM (Z))T .

Rajagopal and Potter in [14], [16] show that ifH(z) is nonin-
vertible andN ≥ P , then theP ×P maximal minors ofH(z)
have a common zero. Suppose(z̃1/z̃0, z̃2/z̃0, ..., z̃M/z̃0) is a
solution of the maximal minors ofH(z) wherez̃0 6= 0. Then
(z̃0, z̃1, z̃2, ..., z̃M ) is a nonzero solution of maximal minors
of H(Z). Since{t0, ..., tM} is a part of the subset of the set
of maximal minors ofH(Z), this implies thatφ(H(z)) have
a nontrivial common zero. Therefore, by the property of the
resultant shown in Theorem 2, we know

RES(Pk,...,Pk)(φ(H(z))) = 0 (8)

for all noninvertible matricesH(z) of degree at mostk. The
RES(Pk,...,Pk) andti are polynomials, so isRES(Pk,...,Pk)◦φ.
Last but not least, we need to showRES(Pk,...,Pk) ◦ φ is not
a zero function. Let

T (z) =

















































1 0 . . . 0
zk
1 1 . . . 0

zk
2 zk

1

. . . 0
...

...
. . . 1

zk
M zk

M−1

. . . zk
1

0 zk
M

. . .
...

...
...

. . .
...

0 . . . 0 zk
M

0 . . . 0 0
...

...
...

...
0 . . . 0 0

















































be anN × P matrix. SupposeRES(Pk,...,Pk)(φ(T (z))) = 0.
By Theorem 2, we know theti’s have a nontrivial common
zero. i.e. there exists̃Z a nonzero solution such that

tM (Z̃) = z̃Pk
M = 0.

This implies z̃M = 0. If z̃M = 0, then
tM−1(z̃0, z̃1, ..., z̃M−1, 0) = z̃Pk

M−1 = 0. Thus
z̃M−1 = 0. Continuing the process, we can conclude
z̃0 = z̃1 = ... = z̃M = 0. This contradicts the assumption that
Z̃ is nontrivial. SoRES(Pk,...,Pk)(φ(T (z))) 6= 0. Therefore
RES(Pk,...,Pk) ◦ φ is not the zero function. By the definition
of hold generically, we conclude thatH(z) of degree at most
k is generically polynomial left invertible matrix.

By multiplying a large enough common monomial, it is
sufficient to consider only polynomial matrices.

Theorem 4:If N − P ≥ M and k > 0, then anN × P
polynomial M -variate matrixH(z) of degree at mostk is
generically Laurent polynomial left invertible.

Proof: We know that if a polynomial matrixH(z)
is Laurent polynomial left noninvertible, thenH(z) is also
polynomial left noninvertible. According to Theorem 3, this
shows thatRES(Pk,...,Pk) ◦ φ(H(z)) = 0 for all Laurent
polynomial left noninvertible polynomial matrixH(z).

C. Generically Noninvertible whenN − P < M

ProjectiveM -spacePM is the set of equivalence classes
of (M + 1)-tuples (a0, ...., aM ) of elements ofC, not all
zero, under the equivalence relation given by(a0, ...., aM ) ∼
(λa0, ...., λaM ) for all nonzeroλ ∈ C.

The following lemma depends heavily on commutative
ring theory and algebraic geometry. For the details on the
definitions of ring, ideal, radical ideal, and prime ideal, please
refer to [34] and [35]. For the purpose of our proof, we need
only the following definition.

Definition 4 (Height):The height of a prime idealht p is
the supremum of the lengths n of strictly descending chains
p = p0 ⊃ p1 ⊃ ... ⊃ pn of prime ideals. For an arbitrary ideal
I, ht I = inf{ht p | I ⊂ p, p is prime ideal}.

Lemma 4:GivenH(z) anN ×P polynomial matrix inM
variables of degree at mostk > 0 andN ≥ P . Let

V ({mi}) := {Z ∈ P
n | mi(Z) = 0 for all i = 1, ...,

(

N

P

)

}

wheremi is a maximal minor ofH(Z) with some ordering
andH(Z) is the homogenization ofH(z) of degreek. Then
V ({mi}) is empty if and only ifht 〈mi〉 = M +1. Therefore
if V ({mi}) is empty, thenN − P ≥ M . In other words, if
N − P < M , thenV ({mi}) is nonempty.

Proof: Sincemi is homogeneous, then the unit does not
lie in 〈mi〉. This implies that〈mi〉 6= C[x0, ..., xn]. By [32,
p.370] and the definition of radical ideal,V ({mi}) is empty
if and only if

√

〈mi〉 = 〈x0, ..., xM 〉. It is easy to see that
ht

√

〈mi〉 = M + 1. Sinceht 〈mi〉 = ht
√

〈mi〉, the height
of 〈mi〉 is alsoM + 1. Macaulay in [36, p.54] proved that
ht 〈mi〉 ≤ N − P + 1. Therefore ifV ({mi}) is empty, then
N − P ≥ M . In other word, ifN − P < M , thenV ({mi})
is nonempty.

Definition 5 (Weak-Zero):[29] A point in PM is said to be
weak-zeroif at least one of its coordinates is zero.

Lemma 5:A polynomial matrixH(z) is Laurent polyno-
mial invertible if and only if the setV ({mi}) contains only
weak-zeros whereH(z), V andmi are same as above lemma.

Proof: Follows immediately by Proposition5.2 in [37].

Remark 3:Suppose nowN − P < M . By Lemma 4 and
Lemma 5, if anN × P polynomial matrixH(z) is Laurent
polynomial invertible, then the setV ({mi}) contains at least
one weak-zeros.

Now we can prove the second half of Conjecture 1.
Theorem 5:If N − P < M and k > 0, then anN × P

polynomial M -variate matrixH(z) of degree at mostk is
generically Laurent polynomial left noninvertible.

Proof: The strategy of the proof is the same as in
Theorem 3 above. We will find a nonzero polynomialF such
thatF (H(z)) = 0 for every Laurent polynomial left invertible
polynomial matrixH(z).
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If N < P , then every polynomial matrix is left noninvert-
ible. Thus the statement is true. For example we may arbitrar-
ily set F = 1. Now we assumeN ≥ P . SupposeH(z) is in-
vertible. Since there exists a Laurent polynomial matrixG(z)
such thatG(z)H(z) = I and G(z1, ..., zN−P+1, 1, ..., 1) is
well-defined,H(z1, ..., zN−P+1, 1, ..., 1) is also Laurent poly-
nomial invertible. We can now assume thatM = N − P + 1.
Defineti(Z) to be the same as in the proof of Theorem 3. Let

t
(i)
j = tj(z0, ...,

i-th
0 , ..., zM ). For eachi = 0, ..., M , defineθi

to be a function such that

H(z) 7→ (t
(i)
0 , ..., t̂i

(i)
, ..., t

(i)
M )T

where t̂i
(i)

means that the termt
(i)
i is omitted from

the coordinates. By Remark 3 and the fact that
{t

(i)
0 (Z), ..., t̂i

(i)
(Z), ..., t

(i)
M (Z)} is the subset of the

set of maximal minors ofH(Z) implies that θi(H(z))
have a nonzero common zero for somei = 0, ..., M . By
the property of the resultant shown in Theorem 2, we know
for any Laurent polynomial left invertible polynomial matrix
H(z) that

RES(Pk,...,Pk)(θi(H(z))) = 0 for somei = 0, ..., M .
(9)

Now let

F =

M
∏

i=0

RES(Pk,...,Pk) ◦ θi. (10)

ThenF (H(z)) = 0 for all Laurent polynomial left invertible
polynomial matrix H(z). The RES(Pk,...,Pk) and t

(i)
j are

polynomials, so isF . Lastly, we need to showF is not a
zero function. Let

T (z) =



































1 0 . . . 0
zk
1 1 . . . 0

zk
2 zk

1

. . . 0
...

...
. . . 1

zk
M zk

M−1

. . . zk
1

0 zk
M

. . .
...

...
...

. . .
...

0 . . . 0 zk
M



































be anN ×P matrix. SupposeRES(Pk,...,Pk)(θi(T (z))) = 0.

By Theorem 2, we know that{t(i)0 , ..., t̂i
(i)

, ..., t
(i)
M } have a

nontrivial common zero. i.e. there exists̃Z a nonzero solution
such that

tM (z̃0, ...,
i-th
0 , ..., z̃M ) = z̃Pk

M = 0.

This impliesz̃M = 0. If z̃M = 0, then

tM−1(z̃0, ...,
i-th
0 , ..., z̃M−1, 0) = z̃Pk

M−1 = 0.

Thus z̃M−1 = 0. Continuing the process, we can conclude
z̃0 = z̃1 = ... = z̃M = 0. This contradicts the assumption that
Z̃ is nontrivial. SoRES(Pk,...,Pk)(θi(T (z))) 6= 0 for all i.
ThereforeF is not a zero function. By the definition of hold

N
1 2 3 4

1 0 500 500 500
M=1 P 2 0 0 500 500

3 0 0 0 500
4 0 0 0 0

1 0 0 500 500
M=2 P 2 0 0 0 500

3 0 0 0 0
4 0 0 0 0

1 0 0 0 500
M=3 P 2 0 0 0 0

3 0 0 0 0
4 0 0 0 0

TABLE I

INVERSIBILITY TEST FOR A RANDOM POLYNOMIAL MATRIX GENERATOR

WITH DIFFERENTN , P AND M IN 500TEST CASES

generically, we conclude thatH(z) of degree at mostk is
generically polynomial left noninvertible matrix.

Remark 4:Let H(z) be a polynomial matrix. IfH(z) is
polynomial left invertible, thenH(z) is Laurent polynomial
left invertible. But the converse is not true in general. Also if
H(z) is Laurent polynomial left noninvertible, thenH(z) is
polynomial left noninvertible. Also the converse is not true in
general.

Example 7:Let (z) be a1× 1 matrix. It is not polynomial
left invertible matrix but it is a Laurent polynomial left
invertible matrix as(z−1)(z) = 1.

Theorem 6:If N − P < M and k > 0, then anN × P
polynomial M -variate matrixH(z) of degree at mostk is
generically polynomial left noninvertible.

Proof: By Remark 4, we know that if a polynomial
matrix H(z) is polynomial left invertible, thenH(z) is also
Laurent polynomial left invertible. According to Theorem 5,
this shows thatF (H(z)) = 0 for all polynomial left invertible
polynomial matrixH(z).

D. Simulation and Applications

We used a random polynomial matrix generator to generate
polynomial matrices with each entry of degree less than or
equal to 4 and the random coefficients are from 1 to 100.
For each value ofN , P andM , we ran 500 samples to test
invertibility. Date from Table I, we shows agreement with
our theorems. Another observation was that there was a sharp
phase transition from noninvertibility to invertibility depending
only the conditionN − P < M or N − P ≥ M .

These theorems lead to some applications. For image decon-
volution from multiple FIR blur filters, Harikumar and Bresler
in [33], [38] show that perfect reconstruction is almost surely,
when there are at least three channels. Since the image is two
dimensional (i.e.M = 2) and the downsampling rate is just
one (i.e.P = 1), by Theorem 4, we know that the perfect
reconstruction is almost surely if the number of channels
is greater than two (i.e.N ≥ 3). Therefore Harikumar and
Bresler’s image deconvolution is a special case of our main
theorem.
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Another application is that we can have an alternative
approach in designing multidimensional filter banks. We can
freely design the analysis side first such that it satisfies the
condition (i.e.N−P ≥ M ). Then , by Theorem 4 and Lemma
3, we can almost surely find a perfect reconstruction inverse
for the synthesis polyphase matrix.

V. FAST COMPUTATION OF LEFT INVERSES

By Theorem 4, we know we should design the filter banks
such thatN − P ≥ M . SupposeN − P ≥ M . SinceH(z)
is a Laurent polynomial matrix, there existsl ∈ NM such that
zlH(z) is a polynomial matrix and is generically Laurent
polynomial left invertible. However, at the same time, the
zlH(z) is generically polynomial left invertible by Theorem
3. Due to this fact, we can improve our Algorithm 2.

Algorithm 3 Faster Version
The computational algorithm for a Laurent polynomial left
inverse matrix.
Input: N × P Laurent polynomial matrixH(z) with M
variables
Output:P × N Laurent polynomial matrixG(z), if it exists

1: multiply H(z) by a common monomialzl such that
zlH(z) are polynomial matrix

2: call Algorithm 1 with the inputzlH(z)
3: if the output of Algorithm 1 isJ(z), then outputz−lJ(z)
4: elsecall Algorithm 2
5: end if

Since Algorithm 1 does not need to introduce any new vari-
able and the matrix is smaller, the computation of Algorithm1
is faster than Algorithm 2. Moreover, as we mentioned before
z

l
H(z) is generically polynomial left invertible, so most of

the time we would perform Algorithm 1 in step3, which leads
to less frequent calling of Algorithm 2 in step4. Therefore,
Algorithm 3 is faster than Algorithm 2 in most cases.

Example 8:Compare the processing time between Algo-
rithm 2 and Algorithm 3. LetH(z1, z2)

=









4z1 7z1
−1z2

2 + 2 + 10z1
−1

1 + 10z1
−1 10z1 + 3z2

7z1 + 9z2 + 10z1
−1z2 + 10z1

−1 0
8z1

−1z2
2 + 10 + 4z1

−1 6z1
−1z2

2









be a Laurent polynomial matrix. Then letH
′(z1, z2, w)

=

















4z2
1 7z2

2 + 2z1 + 10
z1 + 10 10z2

1 + 3z1z2

7z2
1 + 9z1z2 + 10z2 + 10 0

8z2
2 + 10z1 + 4 6z2

2

1 − z1z2w 0
0 1 − z1z2w

















be a polynomial matrix according to Proposition 2.
To calculate a Laurent polynomial left inverse using Algorithm
2:

1: >system("--min-time", "0.02");
2: >timer=1; . The time of each command is printed
3: >int t=timer; . Initialize t by timer

4: >matrix U[2][2]=unitmat(2);
5: >matrix G’[2][6];
6: G’=transpose(lift(transpose(H’),U));
7: //used time: 0.23 sec. . Using a desktop PC

Then the left inverse is(z1
−1G

′(z1, z2, z
−1
1 z−1

2 ))i=1,2,j=1,..,4.
To calculate a Laurent polynomial left inverse using Algorithm
3 in Singular:

1: >matrix U[2][2]=unitmat(2);
2: >matrix J[2][4];
3: J=transpose(lift(transpose(z(1) * H),U));
4: //used time: 0.06 sec.

Then the left inverse isz1
−1J(z1, z2).

This agrees that Algorithm 3 is faster than Algorithm 2.

VI. CONCLUSION

In this paper we study the inverse problem of a Laurent
polynomial matrices. Such matrices arise in FIR filter banks
as polyphase matrices. We use the computation of Gröbner
bases to test the invertibility. Then we propose algorithmsto
find a particular left inverse. We note that there is a sharp
phase transition on the invertibility depending on the sizeand
dimension of a given Laurent polynomial matrix. Specifically
whenN − P ≥ M , the M -variateN × P polynomial (resp.:
Laurent polynomial) matrix is generically invertible; whereas
when N − P < M , the matrix is generically noninvertible.
Using this sharp phase transition property, we develop a fast
algorithm to compute a particular left inverse for a given
Laurent polynomial matrix.

These results suggest an alternative approach in designing
multidimensional filter banks by freely generating filters for
the analysis side first. If we allow an amount of oversampling
(i.e. N−P ≥ M ), then we can almost surely find a perfect re-
construction inverse for the synthesis polyphase matrix. These
results also have potential applications in multidimensional
signal reconstruction from multichannel filtering and sampling.
Acknowledgment. The authors thank Dr. Jianping Zhou
whose PhD thesis has inspired this work.
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[2] M. Vetterli and J. Kovačević,Wavelets and Subband Coding. Prentice-
Hall, 1995.

[3] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger, “Frame-theoretic
analysis of oversampled filter banks,”IEEE Trans. Signal Proc., vol. 46,
pp. 3256–3268, Dec. 1998.
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