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Generic Invertibility of Multidimensional FIR Filter
Banks and MIMO Systems
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Abstract—We study the invertibility of M-variate Laurent original signal. Using the polyphase representation inthe
polynomial N x P matrices. Such matrices represent multi- domain [1], [2], we can represent the analysis part as an

dimensional systems in various settings such as filter banks nr . p matrix H(z) (shown in Fig.1(b)) with entries in a
multiple-input multiple-output systems, and multirate systems. L t vol ial ri 1 -1y

Given an N x P Laurent polynomial matrix H(z1,..., zas) of ~-aurent polynomia r_'ngc[z_lvz27""_z1"fvzl 2o EM J- In
degree at mostk, we want to find a P x N Laurent polynomial  this caseM is the dimension of signalsy is the number

left inverse matrix G(z) of H(z) such that G(z)H(z) = I. of channels in the filter bank, ani is the sampling factor
We provide computable conditions to test the invertibility and  at each channel. An application of this setting may arise in
propose algorithms to find a particular inverse. multichannel acquisition. In such an application we cdllec

The main result of this paper is to prove that H(z) is - - .
generically invertible when N — P > M; whereas whenN — P < data about an unknown multidimensional sign¥l(z) as

M, then H(z) is generically noninvertible. As a result, we Outputof the analysis partin Fig. 1(a). The acquisitiorteys
propose an algorithm to find a particular inverse of a Laurent (filters H;(z) and sampling matrixD) is fixed and known

polynomial matrix that is faster than current algorithms kn own  beforehand. The objective is to reconstrukt(z) with a
to us. synthesis part(z). The existence of a synthesis part becomes
Index Terms—Left Invertibility, Perfect Reconstruction, a purely mathematical question.
Grobner Bases, Multidimensional Multirate Systems, Generic  Therefore, our first problem is to consider whether there
Property. exists aP x N matrix G(z) over a Laurent polynomial ring
(C[Zh 22y ey ZM s 21_17 ey Z]u_l] for which G(Z)H(Z) =1Ip
whereIp is the P x P identity matrix.
One dimensional perfect reconstruction finite impulse re-
During the last two decades, one dimensional multiragponse (FIR) filter banks have been investigated in several
systems in digital signal processing have been thorouglsiudies [3], [4], [5]. The Euclidean algorithm plays a keyero
developed. Due to the high demand of multidimensiondi the matrix inverse problem for one dimensional perfect
processing including image and video processing, volumetreconstruction FIR filter banks [4] since it can be used to
data analysis, and spectroscopic imaging, multidimemsiodind the GCD of a family of polynomials. For multivariate
multirate systems require more extensive study. Perfect golynomials, there is a GCD (since the ring is a unique
construction, which guarantees that an original input can factorization domain) but the GCD is not necessarily a linea
perfectly reconstructed from the outputs, is one key priypecombination of the polynomials. The theory of Grobner lsase
of a multidimensional multirate system. has been introduced to compute with multivariate polyndsnia
In a multidimensional multirate system, a digital signd6], [7] and the theory is widely used in multidimensional
is split into several channels and processed with differesignal processing [8], [9], [10], [11], [12], [13]. Methodssing
sampling rates. The most popular multirate systems are filferobner bases techniques for testing the invertibilityaofi
banks shown in Fig. 1(a). In the analysis part, a digital tnpfor computing a particular inverse of aN x 1 multivariate
signal is filtered and then downsampled, generating maltippolynomial matrix H (z) were proposed in [14], [15]. For an
outputs at the lower rates. In the synthesis part, the neltipV x P multivariate polynomial matrixt (z) where P > 1,

outputs are upsampled and then filtered to reconstruct @@oint matrix methods are employed in [14], [16]. Park in
[17] provides a method to find the inverse of a Laurent
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ANALYSIS SYNTHESIS
Hy iD D Go
— H, D ™D G1

ANALYSIS SYNTHESIS

X—> ] H(2) G(2) = X
[ ] [ ]
[ ] [ 3

(b)

Fig. 1. Example system represented by a polynomial matex.A multidimensional N-channel oversampled filter bankf; and G; are analysis and
synthesis filters, respectively) is an M x M sampling matrix with sampling rat® = |det D| < N. (b) Polyphase representatiohi (z) and G(z) are
analysis and synthesis polyphase transformation matniespectively;{l;} is a basis of the lattice generated by the sampling mdix

that whenM — N > P, an inverse “almost surely” exists. Il. MATHEMATICAL CONTEXTS
On the other hand, whed/ — N < P, an inverse “almost . )
surely” does not exist. To make precise the study of thisrswe A- (Left) Inverse Polynomial Matrix Problem

existence problem, we employ measure theory [20] and theye se holdface letters to denote vectors, or matrices. Let

concept of “holds generically” [7]. z be anM-dimensional complex variable = (z1, ..., zp7) in
CM. Forn = (ny,...,ny) € ZM, we define the monomial
M

z™ = [[,Z; 2. In this paper, we will always assume that
N, P, and M are positive integers.
Definition 1 (Polynomial or Laurent Polynomial Matrix):

The paper is organized as follows. In Section II, we shofy? IV % £ matrix H(z) is said to be apolynomial matrix
how to verify the invertibility of a Laurent polynomial magr (F€SP-: Laurent polynomial matrik if every entry is a
ces. In Section Ill, we propose algorithms to find a particul®°!ynomial (resp.: Laurent polynomial). _
inverse based on the Grobner bases computation. Next, w&e€finition 2 (Left Invertible):An N x P polynomial (resp.:
characterize the set of all inverses. In Section IV, we proy@urent polynomial) matrixt (z) is said to bepolynomial
that whenN — P > M, then a polynomial matrix of degree at(resp.: Laurgnt polynomial) left mvertlbllfé there e_X|sts aP x
mostk is generically polynomial (resp.: Laurent polynomialy¥ Polynomial (resp.: Laurent polynomial) matr&(z) such
left invertible; whereas whetV — P < M, then a polynomial that
matrix of degree at most is generically polynomial (resp.: G(2)H(z) = Ip. Q)
Laurent polynomial) noninvertible. Based on this resulg w
present a fast algorithm to find a particular inverse in $ecti Otherwise H(z) is said to bepolynomial (resp.: Laurent
V. We conclude with a summary in Section VI. polynomial) left noninvertible
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The discussion of polynomial (resp.: Laurent polynomiabeduced Grobner basis since thgare linearly independent.
left invertible can also apply to polynomial (resp.: LaurerBy the uniqueness of reduced Grobner basis with respect to a
polynomial) right invertible. To avoid repetition, throigut given term order{e;},—1 . p is the reduced Grobner basis of
the paper we use the word “invertible” to represent eithe.
polynomial left invertible or Laurent polynomial left indéble. Suppose on the other hand that the reduced Grobner basis
It will be clear in the context whether it is polynomial leftof S'is {e;};=1,..p. Then there exist somfg;;(z)} satisfying
invertible or Laurent polynomial left invertible. We willlso  (3). Let G(z) = (g:;(2)). Then
restrain from using the pedantic “(resp.: Laurent polyradji

when it is understood in the context. G(z)H(z) = 1.
Consider anV x 1 matrix H(z) over C[z] where H;(z) is Thus H (2) is invertible. -

thei-th row of H(z). If the greatest common divisor (GCD) of 1 329

{H1(2), ..., Hn(2)} is 1, then the Bezout identity problem has 24 4+1 0 | . .

a solution [21]. We can use the Euclidean algorithm to find Example 1:ls H(z, 22) = 3 2, | invertible?

the GCD and also a set of polynomidl&(z), ..., Gn(2)} 324 5

[22] such that N We can use the softwa®ingular [26] to implement the above
S Gy Hj(z) = 1. et |
pa 1: >ring R=0,(z(1),z(2)),dp; >

. o ) R is a ring with 2 variables;dp specifies degree reverse
However, the univariate GCD criterion and Euclidean algo- lexicographical ordering

rithm fail for multivariate polynomials. But the multivate 2. >matrix H[4][2];

membership problem can be solved by using Grobner bases SH=1,32(2),2 *2(1)+1,0,3,2(1),3 2(2),5:
[6], [23]. Briefly, the theory of Grobner bases implies taay . >print(H):

set of generators of an ideal or module has a unigdeced .. 1,3 *2(2),

Grobner basisfor a given ordering. This basis is obtained by . 5, 2(1)+1,0,

using Buchberger’s algorithm [24].

In particular, supposéb; (2), ...,b,(z)} is a Grobner ba- ; g*zz(:(l-%)5
sis of a C[z]-submodule(r;(z),....,7n(2)) generated by o . 4/ie S=transpose(H): > S is the module
r1(z),...,7n(2) [25] wherer;(z) belongs toC[z]”. Then generated by rows off (21, 2,)
there exists am x N transformation matri{W;;(z)} such . >option(redSB); > Computes a reduced standard
that N basis in any standard basis computation
bi(z) = Z Wi (z)r;(z). (2) 1 >pri.nt(std(S_)); > Returns the reduced Groebner
J=1 basis by using above option
Buchberger's algorithm is implemented in most compute]r;f étl)

algebra software systems, such as Singular, MacauIey2|e|,\/lap1

and Mathematica, and hence the computation of Grobnesba8¥ Proposition 1, we know thaH (z1, 2;) is invertible.
is available in these systems. The results from algebraic geometry and Grobner bases deal

only with polynomial matrices. To be applicable for systems
B. Criteria for Left Invertibility with general FIR filters, not just causal or antlcagsal filtave

. need to extend the results from polynomial matrices to Liasure
_ To conclude a general fact between the Grobner bases 8l omial matrices. One method is to multiply both sides of
invertibility of a polynomial matrix, we have the following (1) with a monomial of high enough degree. ThE(z) is

proposition. This generalizes Proposition 2 from [15]. | 5, rent polynomial left invertible if and only if there ekia
Proposition 1: SupposeH (z) is an N x P polynomial P x N polynomial matrixé(z) such that
matrix. Let S = (hi(2),....,hn(2)) be theC|[z]-submodule

of C[z]” generated by the rows;(z) of H(z). Then H(z) G(z)H(z) = 2*Ip 4

is invertible if and only if the reduced Grobner basisSis ) o ) .
{eiVie1._p Wheree; is thei-th row of the P x P identity for some integer vectdk. But finding a suitable integer vector

k might require an extensive search. However, by generglizin

matrix.
Proof: SupposeH (z) is invertible. Then there exist | N€orent from [15], we have a simple algorithm to determine
G(z) = (g;;(2)) such that thther the given Laurent polynomial matrix is invertible o
not.
G(z)H(z) =1I. Proposition 2: SupposeH (z) is an N x P Laurent poly-
Then nomial matrix. Consider théN + P) x P matrix
N
o y , / _ z™H (z)
“= ;gu (2)h;(2) ®) H (z,w) = (diag(l — 2122...2Mw)) )

for Z =1,..,P. According.to the definition .Of a Gr.ﬁbner 1Theorem?2 from [15] can be proved directly by using the "Rabinowitch
basis [6, p.121]{e;};=1,..p IS a Grobner basis of. It is a trick”. See also [27].
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wherem € NM is such that™ H (z) is a polynomial matrix, These algorithms use Grobner bases and are based on Propo-
w is a new variable, andiag(y) is a P x P diagonal matrix sition 1 and Proposition 2.

with elementy on the diagonal. Thed# (z) is Laurent poly-

nomial left invertible if and only ifH'(z,w) is a polynomial Algorithm 1 Particular Polynomial Inverse

left invertible matrix.
Proof:

there exists a polynomial matri&(z) = (g¢;;(z)) satisfying
(4). Among thesek, pick one for whichm’' € Zﬁ/_ﬂ is the 4
least integer vector. Let, be the maximal entry oin’ =
{m1,...mp}. If mg = 0, then H(z) is polynomial left
invertible and so i’ (z, w). Otherwisem, is positive. Now
let

. if the reduced Grobner basis {g&;}i—1,. .,

The computational algorithm for a polynomial left inverse
If H(z) is Laurent polynomial left invertible, matrix
thenz"™ H (z) is also Laurent polynomial left invertible. Theninput: N x P polynomial matrixH (z) over C|z, .

2]

Output: P x N polynomial matrixG(z), if it exists
: compute the reduced Grobner basigbf (z), ...

hy(2)}
whereh;(z) is a row of H(z) and the associated trans-
formation matrix{W;;(z)} as defined in (2)

p, then output

(Wi;(2))

wmo [[M | 210 kg (2), i=1,.,P; j=1,..,N; & elsethere is no solution
e 4: end if
9i5(z,w) = fmo I(Hl pawk, it i =4 —N;
0, otherwise
Let G'(z,w) = (9;,(z,w)) be the corresponding x (P+N) Algorithm 2 Particular Laurent Polynomial Inverse

matrix. Then by a straightforward computation, we can coi-he computational algorithm for a Laurent polynomial left
clude thatG’(z,w) is a polynomial left inverse oH’(z,w). inverse matrix

Now supposeH’(z,w) is polynomial left invertible. There Input: N x P Laurent polynomial matrixH (z) with M
exists G'(z,w) such thatG’'(z,w)H'(z,w) = I with variables
G'(z,w) = (g};(z,w)). Set Output: P x N Laurent polynomial matrdG (=), if it exists
M 1: multiply H(z) by a common monomiat™ such that
H )iet H'(z,w) is polynomial matrix from Proposition 2
piet 2: call Algorithm 1 with inputH'(z, w)
3: if the output of Algorithm 1 isG’(z,w), then output

G(z) = (z7"gj;(2

.....

Then we haveG(z)H(z) = I and G(z) is a Laurent 2™ (G (= M Y ie1 Pt N
; ; ; ; i\ Lk=1 %k ))i=1,..., P =1,
polynpmlal matrix. HenceH (z) is Laurent polynomial left = coihere is no solution
invertible. B oondif
: S “1 ) invertible? —
Example 2:Is H(z) = 243 241 inver 7
Clearly it is not polynomial invertible because the deteramit Example 3:Find an inverse of H(z,z2) =
is zero whenz; is zero. To verify that the matrix is Laurent 1 329
polynomial left invertible, we need to introduce a new vari{ 2z; +1 0
able and theH'(z,w) from (5) and test the invertibility of 3 2 | By Example 1, we know thaH (21, 22)
HI(Z,’U}). A 322 . 5
1: >ring R=0,(z(1),z(2),w),dp; is invertible. . . .
2: >matrix H'[4][2]; To calculate a left inverse of polynomial matrix, we have the
3 >H'=z(1),2(1),2(2)"2+3,2(2)"2+1, following:
1-z(1) =*z(2) *w,0,0,1-z(1) *7(2) *w; 1: >matrix U[2][2]=unitmat(2); > Uis the2 x 2
4: >print(H’); identity matrix
5. z(1),z(2), 2: >matrix G[2][4];
6: z(2)"2+3,z(2)"2+1, 3: >G=transpose(lift(transpose(H),V)); > lift
7. -z(1) *z(2) »w+1,0, is function that returns a transformation matifixwhere
8: 0,-z(1) *z(2) *w+1 U=H"xL
9: >module S=transpose(H’); 4: >print(G);
10: >option(redSB); 5. 2/1792(1),18/1792(2)-1/179,-6/179z(2)+
11: >print(std(S)); 60/179, -12/179z(1) ,
12: 1,0, 6: 12/1792(1),3/8952(2)-6/179,-36/179z(2)+
13: 0,1 2/179, -2/895z(1)+1/5
This implies thatH (z) is Laurent polynomial left invertible. 7: zF:)”nt(G *H);
8: L]
9: 0,1

I1l. PROPOSED ALGORITHMS Thus &( s a left ( )
. us 21, 22) IS a left Inverse ofH 21,22).
A. Computation of Left Inverses Example 4:Find an inverse of H(z) =

In this section we introduce two new algorithms to generateé z; z1 .
an inverse matrix of a given matrix if the matrix is invertbl tg +3 Z3+1) By Example 2, we know thaH (=) is
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Laurent polynomial left invertible. To calculate a left arge First we make a simple observation. Suppagé are

using Singular: elements in some ring for whickh = 1 while hg # 1. Then
1: >matrix U[2][2]=unitmat(2); hghg = hg and (1 — hg)h = 0. If a is any element, then
2: >matrix G’[2][4]; a(l — hg)h = 0 and hence
i z;srin';r(zr?;pose(l|ft(transpose(H ),L)); (9 +a(l —hg))h=1.
5:-1/2 %z(2)'3 *w-1/2 *z(2) *w,1/2 xz(1) *z(2) *w, Thus if hg # 1, then we can find infinitely many left
1,0, inverses toh. With this in mind we have the following general
6: 1/2 *2(2)°3 *w+3/2 *2(2) *w,-1/2 =z(1) *z(2) *w, statements.
0,1 Lemma 1 (Zhou){19], [29] SupposeH (z) is an N x P
7. >print(G’ «H); polynomial matrix andG(z) is a P x N polynomial matrix
8 1,0, such thatG(z)H(z) = I. Then G(z) is an polynomial
9: 0,1 inverse matrix ofH (z) if and only if G(z) can be written as
PG, i perm 2GR = G(z) = G(z) + AR - HEER) )
( 27 227 20 ) is a left inverse ofH (2). . _ . .
%2_1 25+ 571 -3 , where A(z) is an arbitraryP x N polynomial matrix.
ajagopal and Potter explore the computation of the syn-tpaorem 1 (Park):[30] SupposeH (z) is anN x P poly-

thesis part of anl/-variate perfect reconstruction FIR filter., o nial matrix andG(z) is a P x N polynomial matrix such
Their algorithm [14], [16] first computes every maximal minothaté(z)H(z) — I. Let hy. ho, ... hy be row vectors of

of H(z) and the corresponding adjoint matrix. Then it useﬁl(z)' ThenG(z) is an polynomial inverse matrix ofl (z)
them to compute an inverse dil(z). The size of the set ; , only if G(z) can be written as

of maximal minors is(];), which could be large iftN — P .

is large. When this is the case, we find in practice that the G(z) = G(z) + A(2)Syz(hy, ha, ..., hy) @
algorithm is extremely slow. In order to avoid the problem _ _ . : :

that the computation of maximal minors poses, our AlgorithlwhereA(z) is an arbitrary polynomial matrix and Syz is the
2 computes an inverse directly by using the computationef tRY2Y9Y [6] of {hs, ha, ..., v} )
reduced Grobner bases for modules. Park [17] also preaants Remark 1:Both of these theorems hold when polynomial

algorithm. To find the inverse of Laurant polynomial matsice 'S 'éPlaced by Laurent polynomial.

Park transforms the Laurent polynomial matrix into a polyno  Remark 2:Note that since I — H(2)G(2))H(z) = 0, the
mial matrix by multiplying by a series of elementary matsce eIemenF(I B H(Z)G(z),) IS a Syzygy of{hs, ..., f,LN}_' .
Our approach simply transforms Laurent polynomials into Zhou's r_neth_od prowde_s a simple char:’:\cterlzatlon_ of in-
polynomials by multiplying by a large enough monomialV€"ses which is easy to |mpler_nen_t. Park’s method is more
Therefore our approach is simpler and provides a closed fofifimPlicated. However the matrix size of the free parameter
formula to compute an inverse. A(z)in Lemma 1isP x N, while the smallest possible matrix

When one designs a filter bank, one would like to estimat¥?€ OfA(2) in Theorem 1isP x (N — P) in theory. Though
the degree of the entries in the inverse matrices. Canigtia e SY2Y9Y Provided bySingular does not necessary attain this

[28] propose an upper bound on the degrea/of N invertible optimal size, the matrix size foA(z) obtained in Park’s

) Ip method is in general smaller than Zhou’s method.
matrix K (z) such thatK (z)H (z) = [ 0 ] and the degree 2 2+ 1
bound ofdeg(K(z)) is optimal in order. Example 5:Let be H(z) = 2+2 2 | End the
Proposition 3: [28] Assume thatH (z) is anN x P invert- 3 21 +2
ible matrix in M variables. Letdeg(H (z)) be the maximum 1 2

of the degrees of the entries Bf(z) and letd = deg(H (z))+ S'% O_fA(Zl’ z2) from Theorem 1 usingingular.
1. Then there exists alV x N invertible matrix K (z) such 1 >ring R=0,(z(1),z(2)),dp;

that 2: >matrix H[4][2];
_|Ip 3: >H=z(1),2(1)+1,2(2)+z(1),z(1),3,z(1)+2,
K(z)H(z) = {0} 2(1),2(2);

4: >option(redSB);

anddeg(K (2)) is (Pd)©M). 5. >matrix S=trans ;
. . ) : = pose(syz(transpose(H)));
This suggests that the maximum degree of the entries of the > wheresyz computes the syzygy

P x N inverse matrixG(z) is also less than or equal to

P)O(M) 6: > print(S);
(Pd)ZH. 70 S[LA]S[L.2],2(2) 2+2(1).2(1)- 2(2)-3,

8: S[2,1],z(1)"2-z(1)-3,z(1) *2(2)+z(1)+z(2),
B. Characterization of Inverses 0

Algorithms 1 and 2 do not guarantee that the inverse would: S[3.1],S[3,2],2(2)"3-2(1)-z(2),-z(2)"2-
be well behaved. In this section, we refer to some results tha z(1)-4 *z(2)
characterize the set of all inverses. Once we have a paticukhere S|i, j] is some long polynomial expression. Thus the
inverse, we can parametrize the set of all inverses. required free parameted(z1,z2) in Theorem 1 is & x 3
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matrix. It is not the optimal matrix size, namelyx 2. But SupposeF(f) is nonzero (i.e.ca(c? — 4caco) # 0). Then
the size of A(z1,22) in Zhou's method is2 x 4. Therefore ¢y # 0 andc? — 4cacy # 0. So f has two distinct solutions.
applying Park’s method usingingular would lead to smaller Therefore by the above definitiofi(x) = co2? +ci1x+co has
size of A(z) in this case. two distinct solutions generically. [ ]

In the set of all inverses, an optimal set of synthesis filters Lemma 3:If a property of polynomials of degree at most
can be obtained according to some design criteria [11],, [1%, ..., k, in M variables is generic, then the coefficient space

[18]. C of polynomials whose polynomials failed to satisfy the
property is measure zero and nowhere dense.
IV. GENERIC INVERTIBILITY Proof: By the definition of hold generically, there exists
A. Lebesgue Measure and Generic Property a nonzero polynomiaF' in the coefficients of thef; such

- . . L that the property fails to satisfy fofi, ..., f, for which the
When designing filter banks, an important question is hoﬁvolynomizl ;(fﬁlu_’fn) is vanghingl. Letjlc‘%i be the set of

likely it is that the synthesis part of the perfect recondian A : .
filter banks exists. If it does not exist, then in general we a|M variate polynomials of degree less than or equat;taBy

not able to reconstruct the original signal. emma 2,
In [19], Zhou and Do made the following conjecture.
Conjecture 1:SupposeH (z) is an M-variate N x P

polynomial (resp.: Laurent polynomial) matrix witN' > P.

If N — P > M, then it is ‘almost surely polynomial wherel = (*7*) + .4 (3™} is the dimension of the

(resp.: Laurent polynomial) left invertible. Otherwise, is coefficient space. Thus, the coefficient spéaef polynomials

“almost surely polynomial’ (resp.: Laurent polynomial) left whose polynomials failed to satisfy the property is measure

N{(f1s s fn) € [T Ri | F(f1s s fu) = 0}) =0

i=1

noninvertible. zero. To show the set is nowhere dense, it is equivalent to
Rajagopal and Potter made another conjecture relatedstw that the closure of the set contains no open set. Suppose
“almost surely” invertible in their paper [14]. it contains an open balB(e) with some radiuse > 0.

Corollary 6 in [14]: SupposeH (z) is anN x P M-variate Since F~'({0}) is a closed setC is also in F=H({0}).
polynomial matrix with N > P. If (¥) > M, then it is Thus, F~'({0}) contains the open balB(). However, this

P . .
“almost surely invertible. contradicts the fact thaf—!({0}) is measure zero. Therefore,
Unfortunately, Corollary 6 in [14] is not correct. Pleastere the coefficient space of polynomials whose polynomialil
to Zhou's thesis [29] for more details. to satisfy the property is nowhere dense. [ |

Suppose the conjecture posed by Zhou and Do is true. IfThe immediate consequence is thatfit ..., f, are drawn
we design filter banks such thaf — P > M, then “almost independently from a probability distribution with respec
surely” there exists a synthesis part of the filter banks Wwhi¢he Lebesgue measure, the propertyfef..., f, holds with
is able to reconstruct the original signal perfectly. probability one. Furthermore, suppogg, ..., f, satisfies the

However, Zhou and Do did not give a precise definition giroperty. Since the coefficient spaCeof polynomials whose
“almost surely”. In order to have the appropriate language, polynomials failed to satisfy the property is nowhere dense
employ the concept of Lebesgue measure and the concepthsfre exists an open bali(¢) aroundfy, ..., f,, for somee > 0
“hold generically”. such that the property is satisfied within the open ) .

In the 2-dimensional plane, it is obvious that any “simple’This shows that the system with the property is robust [33].
line (i.e. not a locally space filling curve) has zero area3dn
dimensional space, we also know that any “simple” surfagg Generically Invertible whedv — P > M
has zero volume. To generalize this property,
following lemma.

Lemma 2:[31, p.9] Let f be holomorphic (which means
infinitely differentiable) in the domai®® c C™, and suppose k
f is not identically zero. Theny ({z € D | f(z) =0}) =0 0
where )\, denote the2 M -dimensional Lebesgue measure

Definition 3 (Generic):[32] A property is said tohold
generically for polynomials f1, .., f,, of degree at most
k1, ..., k, if there is a nonzero polynomidl in the coefficients
of the f; such that the property holds fdgi, ..., f,, whenever
the polynomialF(fi, ..., f») is nonvanishing.

Intuitively, a property of polynomials is generic if it hald
for “almost all” polynomials.

Example 6:[32] The property (z) = cox? +c12+co has
two distinct solutions” is generic.

Proof: Let F' be a polynomial of the coefficients gf=
caz? + 1 + ¢o given by

we have theTo prove our main theorem in this section, we need to
employ the resultant of the polynomials.

Theorem 2 (Resultant)7, p.80] If we fix positive degrees

, ..., kn, then there is a unique nonzero polynomial called the

resultant RESx,, k) € ClUiZ {ui};_, ki | where

the variablesu;; correspond to the coefficients ofth poly-

nomial. Then we have the following property:

If Fo,...,F, € Clxg,...,z)] are homogeneous of degrees

ko, ..., kn, thenkFy, ..., F;, have a nontrivial common zero over

C if and only if RES,,....,.)(F0, -, Fn) = 0.

Now we can translate the first half of Conjecture 1 into the
following mathematical framework.

Theorem 3:If N — P > M andk > 0, then anN x P
polynomial M -variate matrix H(z) of degree at mosk is
generically polynomial left invertible.

Proof: The strategy of this proof is to find a nonzero
polynomial F' such thatF'(H (z)) = 0 for every noninvertible
F = c3(c? — 4eaco) matrix H (z) of degree at most.
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LetZ = (20, ..., 2m). If f(2) = fo(z)+f1(2)+...+ fi(2) s Proof: We know that if a polynomial matrixH (z)
the decomposition of the polynomidlz) into sums of forms is Laurent polynomial left noninvertible, theH (z) is also
fi(z) of degreei, then the homogenizatiofi Z) of f(z) of polynomial left noninvertible. According to Theorem 3, ghi
degreek is defined to bef(Z) = 25 fo(2z) + 24 ' fi(z) + shows thatRES(py, . px) o ¢(H(z)) = 0 for all Laurent
+z§‘lfl(z). Let h;(Z) be theith row of anN x P matrix polynomial left noninvertible polynomial matri¥f (z). ]
H(z). Lett;_1(Z) be the determinant of thB x P submatrix
containingh;(Z), h;+1(Z), ..., h;yp—1(Z). Define¢ to be a

i C. Generically Noninvertible whetV — P < M
function such that

. Projective M-spaceP™ is the set of equivalence classes
H(z) — (to(Z),t1(2), ....tm(2))" . of (M + 1)-tuples (ao, ....,ars) of elements ofC, not all

Rajagopal and Potter in [14], [16] show thatfif (z) is nonin- zero, under the equivalence relation given(ay, ....,ans) ~

vertible andN > P, then theP x P maximal minors ofH (z) (Aag, ..., )‘“M_) for all nonzero\ € C. ) ]
have a common zero. SUPPOSR /2o, 32/ Z0, .-, 211/ Z0) IS @ The following lemma depends heavily on commutative

solution of the maximal minors o (z) wherez, # 0. Then ring theory and algebraic geometry. For the details on the
(30, 51, 22, ..., Z11) is @ nonzero solution of maximal minorsdefinitions of ring, ideal, radical ideal, and prime idedégse
of H(Z). Since{to, ...ty } is a part of the subset of the seféfer to [34] and [35]. For the purpose of our proof, we need

of maximal minors ofH(Z), this implies that(H (z)) have ©nly the following definition.

a nontrivial common zero. Therefore, by the property of the Definition 4 (Height): The heightof a prime idealhtp is
resultant shown in Theorem 2, we know the supremum of the lengths n of strictly descending chains

p=1poDp1D..D p, of prime ideals. For an arbitrary ideal
RES(pi,....pr)(¢(H (2))) =0 (8) I,htI=inf{htp|IC p, pis prime idea}.
Lemma 4:Given H(z) an N x P polynomial matrix inM

for all noninvertible matriced (z) of degree at most. The X
variables of degree at most> 0 and N > P. Let

RES pr.,....pr) andt; are polynomials, so iIBES py... pr)o¢.
Last but notlleast, we need to Sh&¥ES py.....pr) © ¢ 1SN0t /({1m;}):={Z € P" |my(Z) =0 foralli=1,.., ()}

a zero function. Let .

wherem; is a maximal minor ofH (Z) with some ordering

zl{“ (1) 8 and H(Z) is the homogenization off (z) of degreek. Then
V({m;}) is empty if and only ifht (m;) = M + 1. Therefore
z& 2 .0 if V({m;}) is empty, thenN — P > M. In other words, if
: : SO N — P < M, thenV({m;}) is nonempty.
' Proof: Sincem; is homogeneous, then the unit does not
2Ry 2k T 2 lie in (m;). This implies that(m;) # C[zo, ..., z,]. By [32,
T(z) = 0 L . . p.370] and the definition of radical idedl,({m;}) is empty
M o if and only if /(m;) = (xo,...,xa). It is easy to see that
: : P ht\/(m;) = M + 1. Sinceht (m;) = ht+/(m;), the height
0 0 2k of (m;) is also M + 1. Macaulay in [36, p.54] proved that
0 0 0 ht (m;) < N — P + 1. Therefore ifV({m;}) is empty, then
: N — P > M. In other word, ifN — P < M, thenV ({m;})
0 0 0 is nonempty. [ ]

Definition 5 (Weak-Zero){29] A point in PM is said to be

be anN x P matrix. SUppos®RES py, ... pr) (¢(T(z))) = 0. weak-zeraf at least one of its coordinates is zero.

By Theorem 2, we know the;'s have a nontrivial common Lemma 5:A polynomial matrix H (z) is Laurent polyno-

zero. i.e. there exist€ a nonzero solution such that mial invertible if and only if the se¥/({m;}) contains only
(7 — PR weak-zeros wherél (z), V andm, are same as above lemma.
u(Z) =z =0. Proof: Follows immediately by Propositios.2 in [37].

This implies Zj, = 0. If Zmu = 0, then [ |

tym-1(%0,%1, 0 Z-1,0) = ZPF = 0. Thus  Remark 3:Suppose nowN — P < M. By Lemma 4 and
Zy—1 = 0. Continuing the process, we can concludeemma 5, if anN x P polynomial matrix H (z) is Laurent
%o = %1 = ... = Zr = 0. This contradicts the assumption thapolynomial invertible, then the séf({m,}) contains at least

Z is nontrivial. SORES py,....pr)(¢(T(z))) # 0. Therefore one weak-zeros.
RES pi,..., pr) © ¢ is not the zero function. By the definition Now we can prove the second half of Conjecture 1.
of hold generically, we conclude th# (=) of degree at most Theorem 5:If N — P < M andk > 0, then anN x P

k is generically polynomial left invertible matrix. m polynomial M-variate matrix H (z) of degree at most: is
By multiplying a large enough common monomial, it iggenerically Laurent polynomial left noninvertible.
sufficient to consider only polynomial matrices. Proof: The strategy of the proof is the same as in

Theorem 4:If N — P > M andk > 0, then anN x P Theorem 3 above. We will find a nonzero polynomiékuch
polynomial M -variate matrix H(z) of degree at mosk is thatF(H (z)) = 0 for every Laurent polynomial left invertible
generically Laurent polynomial left invertible. polynomial matrixH (z).



If N < P, then every polynomial matrix is left noninvert-
ible. Thus the statement is true. For example we may arbitrar

ily set FF = 1. Now we assumeV > P. SupposeH (z) is in-
vertible. Since there exists a Laurent polynomial ma€ikz )
such thatG(z)H (z) = I andG(z1,...,z2N—p+1,1,...,1) iS
well-defined,H (z1, ..., zn—p41, 1, ..., 1) is also Laurent poly-
nomial invertible. We can now assume thdt= N — P + 1.

Definet;(Z) to be the same as in the proof of Theorem 3. Let

: it
ty) =t;(20,..., 0 ,...,zp). For eachi = 0, ..., M, defined;

to be a function such that
i - (4) i
H(z)— 9, 6" T

where t}(i) means that the termtz(.i) is omitted from

the_ coordinates. By _Remark 3 and the fact
(t9(2),... 5 2),...(2)} is the subset of the

set of maximal minors ofH(Z) implies that 6;(H(z))
have a nonzero common zero for some= 0,..., M. By

the property of the resultant shown in Theorem 2, we kno@’;\énerically

for any Laurent polynomial left invertible polynomial mixtr
H(z) that
RESpy,....pr (0:(H(2))) =0  for somei =0, ..., M.
)

Now let
M

F= HRES(Pk,...,Pk) e} 91
=0

(10)

ThenF(H(z)) = 0 for all Laurent polynomial left invertible
polynomial matrix H(z). The RESp;, .. pr) and ty) are
polynomials, so isF. Lastly, we need to show is not a
zero function. Let

1 0 0
2¥ 1 0
2k 2F 0
. . )
T(z) = k k . k
M FM-1 A
0 2%,
0 o 0 =2k

be anN x P matrix. Suppos®RES py,... pry(0:(T(z))) = 0.
By Theorem 2, we know tha{tg),...,@(z),...,tg\i}} have a
nontrivial common zero. i.e. there existsa nonzero solution
such that

i-th
tar(Zoy ey O 5oy Zar) = 28F =0,

This impliesz,; = 0. If 2, = 0, then

i-th P

t]u_l(go, ceey 0 ,...,21\4_1,0) =Zp-1 = 0.

that
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N
T[] 2] 3] 4
T 0500 500 | 500
M=1 | P|2|0| 0500|500
30| o o]s500
4]o] o] of o
T[]0 0]500] 500
M=2 |[P|2|0| o 0] 500
30| o of o
4o o] o] o
T[0] 0] 0]500
M=3|P|2|0| 0] 0| o0
30| o of o
4]o] o] of o

TABLE |

INVERSIBILITY TEST FOR A RANDOM POLYNOMIAL MATRIX GENERATOR
WITH DIFFERENTN, P AND M IN 500TEST CASES

we conclude thalf (z) of degree at mosk is
generically polynomial left noninvertible matrix. ]

Remark 4:Let H(z) be a polynomial matrix. IfH (z) is
polynomial left invertible, thenH (z) is Laurent polynomial
left invertible. But the converse is not true in general. Ais
H (z) is Laurent polynomial left noninvertible, theH (z) is
polynomial left noninvertible. Also the converse is notetrin
general.

Example 7:Let (z) be al x 1 matrix. It is not polynomial
left invertible matrix but it is a Laurent polynomial left
invertible matrix as(z~1)(z) = 1.

Theorem 6:If N — P < M andk > 0, then anN x P
polynomial M-variate matrix H(z) of degree at mosk is
generically polynomial left noninvertible.

Proof: By Remark 4, we know that if a polynomial
matrix H (z) is polynomial left invertible, therH (z) is also
Laurent polynomial left invertible. According to Theorem 5
this shows thaf’(H (z)) = 0 for all polynomial left invertible
polynomial matrixH (z). [ |

D. Simulation and Applications

We used a random polynomial matrix generator to generate
polynomial matrices with each entry of degree less than or
equal to 4 and the random coefficients are from 1 to 100.
For each value ofV, P and M, we ran 500 samples to test
invertibility. Date from Table |, we shows agreement with
our theorems. Another observation was that there was a sharp
phase transition from noninvertibility to invertibilitygghending
only the conditonN — P< M or N— P> M.

These theorems lead to some applications. For image decon-
volution from multiple FIR blur filters, Harikumar and Bresl
in [33], [38] show that perfect reconstruction is almostedyr
when there are at least three channels. Since the image is two
dimensional (i.eM = 2) and the downsampling rate is just
one (i.e.P = 1), by Theorem 4, we know that the perfect

Thus Z);,_1 = 0. Continuing the process, we can concludeeconstruction is almost surely if the number of channels
Zo = Z1 = ... = zur = 0. This contradicts the assumption thats greater than two (i.eN > 3). Therefore Harikumar and

Z is nontrivial. SORES py,... pry(0i(T(2))) # 0 for all i.

Bresler’'s image deconvolution is a special case of our main

ThereforeF is not a zero function. By the definition of holdtheorem.
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Another application is that we can have an alternatives: >matrix U[2][2]=unitmat(2);
approach in designing multidimensional filter banks. We cars: >matrix G’[2][6];
freely design the analysis side first such that it satisfies the: G'=transpose(lift(transpose(H’),U));

condition (i.e.N—P > M). Then, by Theorem 4 and Lemma 7: //lused time: 0.23 sec. > Using a desktop PC
3, we can almost surely find a perfect reconstruction invers@en the left inverse i, ' G’ (21, 22, 27 25 )iz 2,521, a0
for the synthesis polyphase matrix. To calculate a Laurent polynomial left inverse using Algjom
3 in Singular:
V. FAST COMPUTATION OF LEFT INVERSES 1. >matrix U[2][2]=unitmat(2);
By Theorem 4, we know we should design the filter banks: >matrix J[2][4];
such thatV — P > M. SupposeN — P > M. SinceH(z) 3. J=transpose(lift(transpose(z(1) +*H),U));

is a Laurent polynomial matrix, there exidte N such that  4: //used time: 0.06 sec.

2!H(z) is a polynomial matrix and is generically Laurentrnen the left inverse 811 J (21, 22).

polynomial left invertible. However, at the same time, thehis agrees that Algorithm 3 is faster than Algorithm 2.
2! H (z) is generically polynomial left invertible by Theorem

3. Due to this fact, we can improve our Algorithm 2.
VI. CONCLUSION

Algorithm 3 Faster Version In this paper we study the inverse problem of a Laurent
The computational algorithm for a Laurent polynomial lefpolynomial matrices. Such matrices arise in FIR filter banks
inverse matrix. as polyphase matrices. We use the computation of Grobner
Input: N x P Laurent polynomial matrixH (z) with M bases to test the invertibility. Then we propose algorithms
variables find a particular left inverse. We note that there is a sharp

Output: P x N Laurent polynomial matr>G (z), if it exists phase transition on the invertibility depending on the sind
1: multiply H(z) by a common monomiak! such that dimension of a given Laurent polynomial matrix. Specifigall

2! H (z) are polynomial matrix when N — P > M, the M-variate N x P polynomial (resp.:
2: call Algorithm 1 with the inputz! H (z) Laurent polynomial) matrix is generically invertible; wieas
3 if the output of Algorithm 1 is7(z), then outputz—'J (2) when N — P < M, the matrix is generically noninvertible.
4: elsecall Algorithm 2 Using this sharp phase transition property, we develop & fas
5 end if algorithm to compute a particular left inverse for a given

Laurent polynomial matrix.

These results suggest an alternative approach in designing

blSlncedAt\rI]gorlthtr‘r? 1_does HOt r:ﬁed to mtrto?_uce ?% ne‘_’t\;]\’arllﬁultidimensional filter banks by freely generating filters f
abie and the matrix IS smafler, the computation of Algortm ., analysis side first. If we allow an amount of oversampling

is faster than Algorithm 2. Moreover, as we mentioned befo . A
2! H(z) is generically polynomial left invertible, so most ofEﬁe' N_I? = -M)’ then we can almost surely find & per.fect e
he i Id verf Algorithm 1 i ’h' h lead construction inverse for the synthesis polyphase mattiesé

t eltlmefwe wou p”(_ar orr? Algor!thm 2".q stépr;]c ?a S results also have potential applications in multidimenalo
to less frequent calling of Algorithm 2 in step Therefore, signal reconstruction from multichannel filtering and séimp

Algorithm 3 is faster than Algorithm _2 in most cases. Acknowledgment. The authors thank Dr. Jianping Zhou
Example 8:Compare the processing time between Alg%'vhose PhD thesis has inspired this work.
rithm 2 and Algorithm 3. LetH (z1, 22)

—1,2 -1
Az ) Tz 2 + 24102 REFERENCES
1410z~ 1021 + 329
= T2y 4+ 929 + 102,1712,2 + 10,2171 0 [1] P. P. VaidyannthanMultirate Systems and Filter BanksPrentice-Hall,
1993.
—1,2 -1 —1,2
8217 23 + 10+ 4% 6217 23 [2] M. Vetterli and J. KovacevicWavelets and Subband CodingPrentice-
Hall, 1995.
. . , ,
be a Laurent polynomial matrix. Then I&" (21, z2, w) [3] H. Bolcskei, F. Hlawatsch, and H. G. Feichtinger, “Frtheoretic
2 2 analysis of oversampled filter bank$ZEE Trans. Signal Progvol. 46,
4z Tz3+ 221 +10 pp. 3256-3268, Dec. 1998.
z1 + 10 10z12 + 32122 [4] Z. Cvetkovic and M. Vetterli, “Oversampled filter bank$EEE Trans.
722 4+ 92129 + 1025 + 10 0 Signal Proc, vol. 46, pp. 1245-1255, May. 1998.
1 822 1 10 4 622 [5] J. Kovacevic, P. L. Dragotti, and V. K. Goyal, “Filter barframe
z3 + 1021 + 22 expansions with erasures|EEE Trans. Information Theoryvol. 48,
1 —z120w 0 no. 6, pp. 1439-1450, June 2002.
0 1 — 2120w [6] W. W. Adams and P. Loustaunaén Introduction to Grobner Bases
American Mathematical Society, 1994, vol. 3.
be a polynomial matrix according to Proposition 2. [7] D. Cox, J. Little, and D. O'ShedJsing Algebraic Geometry Springer-
; ; ; g‘.jmm' Verlag, 1998.
TF) calculate a Laurent polynomlal left inverse using Al [8] C. Caroenlarpnopparut and N. K. Bose, “MultidimensiofdR filter
2: bank design using Grobner basd&EE Trans. Circ. and Systvol. 46,
1 >system("--min-time", "0.02"); Dec. 1999. — R
i -1 The ti f h di inted [9] C. Caroenlarpnopparut, “Grobner bases in multidiniamas systems and
2: >timer=1; > e ume of each command IS printe signal processing,” Ph.D. dissertation, PennsylvanigeStiniversity,

3: >int t=timer; > Initialize t by timer 2000.
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