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Abstract— We propose a wavelet-based codec for the static
Depth-Image-Based Representation (DIBR), which allows viewers
to freely choose the viewpoint. The proposed codec jointly
estimates and encodes the unknown depth map from multiple
views using a novel Rate-Distortion (RD) optimization scheme.
The rate constraint reduces the ambiguity of depth estimation
by favoring piecewise-smooth depth maps. The optimizationis
efficiently solved by a novel dynamic programming along trees of
integer wavelet coefficients. The codec encodes the image and the
depth map jointly to decrease their redundancy and to provide a
RD-optimized bitrate allocation between the two. The codecalso
offers scalability both in resolution and in quality. Experiments
on real data show the effectiveness of the proposed codec.

Index Terms— Free-viewpoint rendering, image-based render-
ing, 3D-TV, Depth-Image-Based Representation (DIBR), depth
estimation, joint coding, scalable coding, rate-distortion optimiza-
tion

I. I NTRODUCTION

FREE-VIEWPOINT Three-Dimensional Television (3D-
TV) aims at providing an enhanced viewing experience

not only by letting viewers perceive the third spatial dimension
via stereoscopy but also by allowing them to move inside
the 3D video and freely choose the viewing location they
prefer [1]. The free-viewpoint approach is also useful for
multi-user autostereoscopic 3D displays [2], which have to
generate a large number of viewpoints.

The fundamental problem posed by 3D-TV lies in the
massive amount of data required to represent the set of all
possible views or, equivalently, the set of all light rays inthe
scene. This set of light rays, called theplenoptic function[3],
lies in general in a seven-dimensional space. Each light ray
travels along a line, which is described by a point (three
dimensions), an angular orientation (two dimensions) and a
time instant (one dimension). The last dimension describesthe
spectrum, or color, of the light rays. By comparison, 2D videos
only lie in a four-dimensional space made of two angles, time,
and color. Therefore, 3D-TV requires the design of a novel
video chain [1].
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A large number of methods have been proposed to record
and encode the plenoptic function [4]. They widely differ in
the amount of 3D geometry used to encode the data, which
ranges from no geometry at all (e.g. light field) to an extremely
accurate geometry (e.g. texture mapping). On the one hand,
relying on the geometry has the advantage of requiring fewer
cameras to record the plenoptic function and allowing the
reduction of redundancies between the recorded views [5, 6].
On the other hand, using the geometry has the drawback of
limiting the realism of the synthesized views and requiringa
difficult estimation of the 3D geometry.

An efficient trade-off on the 3D geometry, called theDepth-
Image-Based Representation(DIBR), consists in approximat-
ing the plenoptic function using pairs of images and depth
maps [7]. Now part of the MPEG-4 standard [8, 9], this
representation allows arbitrary views to be rendered in the
vicinity of these pairs. Since depth maps tend to have lower
entropies than images, the DIBR leads to compact bitstreams.
Moreover, realistic images can be efficiently synthesized from
the DIBR using Image-Based Rendering (IBR) and depth maps
do not need to be estimated extremely accurately, as long as
the viewpoint does not change too much.

Encoding the DIBR presents two difficulties. First, the depth
maps are unknown. Therefore, not only do they have to be
encoded, but they also have to be estimated. Second, the
relation between the depth maps and the distortion of the
plenoptic function is highly non-linear, which makes the Rate-
Distortion (RD) optimization difficult. In particular, finding an
optimal bitrate allocation between images and depth maps is
non trivial.

A number of methods have avoided these issues by exclud-
ing depth maps from the RD problem. For instance, in [6, 10]
depth maps are obtained using block-based depth estimation,
essentially a motion estimation, and encoded in alossless
fashion. As an alternative to blocks, depth can also be esti-
mated using meshes [11, 12] or pixel-wise regularization [7].
However, in such methods the image encoder and the depth
encoder operate at different RD slopes, which penalizes the
overall codec efficiency and makes it difficult to optimally
allocate the bitrate [13].

A more principled approach consists in linearizing the
RD problem [14, 15] using Taylor series expansions and
statistical analysis. It has the advantage of leading to closed-
form expressions and allowing a theoretical analysis of the
problem. However, linearization is only valid for small depth
approximations.
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Another way of handling the non-linearity is to assume that
depth maps take a finite number of discrete values. Under some
constraints on the dependencies between depth values, globally
optimal solutions can be found using Dynamic Programming
(DP) [16]. For instance, optimal solutions exist when depth
maps are encoded using Differential Pulse Code Modulation
(DPCM) [17] or quadtrees [18]. This approach does not
require any groundtruth: the estimation and encoding of the
depth maps are carried out jointly. It also takes advantage of
the bitrate constraint to favor smooth depth maps, much like
ad-hoc smoothness terms do in computer vision [19], which
reduces the ambiguity of the estimation.

There is a close relation between depth maps and 2D mo-
tion fields: depth maps define 3D surfaces, whose projection
onto image planes gives rise to motion fields. Therefore, the
techniques designed to solve the RD problem of classical 2D
video coding [20] can usually also be applied to DIBR. Among
these techniques, those described in [21, 22] are related to
the proposed wavelet-based approach. In these codecs, images
are split into blocks of variable sizes using quadtrees, and
the motion vectors are DPCM coded. They achieve global
optimality using DP. However, besides being not scalable, their
complexity is exponential in the number of block sizes, which
limits the range of block sizes they can handle.

In this paper, we propose a new wavelet-based DIBR codec
which performs a RD-optimized encoding of multiple views.
It differs from classical wavelet-based codecs in that partof
the data to be transformed (i.e. the depth map) isunknown.
Here, as shown in Figure 1, both the depth estimation, the
depth encoding and the image encoding are performed jointly.
Although the problem is non-linear, we present a codec able to
efficiently find optimal solutions without resorting to lineariza-
tion. We show that when the depth maps are represented using
special integer wavelets, their joint estimation and coding via
RD-optimization can be efficiently solved using DP along
the tree of wavelet coefficients. The DP we introduce in this
paper differ from the existing one of quadtrees [18, 23], as
discussed in Section III-D. The RD-optimization of the integer
wavelets favors piecewise-smooth depth maps, which reduces
the estimation ambiguity and leads to compact representations
of the data. The joint encoding of the images and depth maps
provides a RD-optimized bitrate allocation. Furthermore,using
the fact that depth discontinuities usually happen at image
edges, it reduces the redundancies between depth maps and
images by coding the two wavelet significance maps only
once. The complexity of the proposed codec is only linear
in the number of wavelet decomposition levels, due to the
special tree structure we introduce.

In addition, the proposed codec offers scalability both in
resolution, using wavelets, and in quality, using quality layers.
The former allows servers to efficiently stream data to display
devices with inhomogeneous display resolutions and inside
online virtual 3D worlds, where the DIBR may actually only
cover a small portion of the display due to its distance to the
viewpoint. The latter lets servers efficiently stream data over
networks with inhomogeneous capabilities. In both cases, the
RD point is chosen on the fly at the server by truncating the
bitstream [24].

Fig. 1. Overview of the proposed codec. The encoder jointly estimates and
encodes a DIBR at the RD slopeλ from the set of views{Iv}. The image and
the disparity map are represented by the vectors of wavelet coefficientsc and
d respectively, whose joint entropy is reduced by sharing thesignificance map
σ(c). At the decoder, an imagêI0 and a disparity map̂δ are reconstructed,
which allow novel viewŝI to be synthesized from arbitrary viewpoints.

The remainder of the article is organized as follows. Sec-
tion II describes the proposed codec and the RD problem at
hand, while Section III details the RD optimization of the
DIBR. Finally, Section IV presents our experimental results.
Some preliminary results appeared in [25].

II. PROPOSEDCODEC

First, we define the RD problem that shall be solved by the
proposed codec. As illustrated in Figure 1, the encoder takes a
set of synchronized views as input and represents them using
the DIBR. The decoder receives the DIBR and synthesizes
novel views at 3D locations chosen by the viewers.

The DIBR consists in a subset of the views, called reference
views, along with unknown depth maps. In the following,
we limit our study to the case of static grayscale views.
In this case, the DIBR provides an approximation to five-
dimensional plenoptic functions with three spatial dimensions
and two angular dimensions. Since the DIBR only offers a
local approximation of the plenoptic function, the viewers
are free to choose arbitrary viewpoints, but only inside a
Neighborhood Of Views (NOV). A natural choice for the shape
of the NOV is to take the union of a set of hypervolumes
made of 3D spheres in space and 2D discs in angle, with one
hypervolume associated to each pair of image and depth map.
Since the approximation does not usually degrade abruptly
when the distance increases, the decoder could actually enforce
a “soft” NOV boundary by discouraging the viewer to choose
a viewpoint outside of the NOV without forbidding it.

The distortion introduced by the codec is measured using
the Mean-Square Error (MSE) between the recorded views and
the views rendered from the DIBR. Denoting thevth recorded
view and its rendered counterpart by respectively the column
vectorsIv and Îv obtained by stacking all the pixels together,
the distortion can be written as

D({Iv}, {̂Iv}) ,
1

NmNnNv

Nv−1
∑

v=0

∥

∥

∥
Iv − Îv

∥

∥

∥

2

2
(1)

where‖.‖2 denotes the 2-norm,Nm andNn are respectively
the number of rows and columns in the views andNv is the
number of views. We denote byN , NmNnNv the total
number of pixels. The distortion takes into account errors on
both the reference views included in the DIBR and the novel
views rendered from the DIBR.
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Fig. 2. The spatial extent of a NOV (sphere) with one pair of image and depth
map, along with seven views (cones). The central dark cone designates the
reference view. The planes represent iso-depth surfaces (3D model courtesy
of Google).

The decoder renders novel views using the nearest pair of
image and depth map. The total distortion is then the sum
of the distortions associated with each pair of image and
depth map. Likewise, the pairs of images and depth maps are
encoded independently of one another, so that the total bitrate
is also the sum of the bitrates associated with each pair.

As a consequence, the RD problem can be solved for
each pair of image and depth map independently. Rendering
and encoding multiple pairs jointly might lead to increased
RD performances. However, this would introduce complex
data dependencies which cannot be trivially handled by the
proposed method. Moreover, this would reduce the ability of
the decoder to access views randomly [4]. Without loss of
generality, the remainder of this article only considers the
case where a unique pair is encoded and the reference view
is indexed byv = 0.

The quantized depth map takes a finite number of discrete
values, which define a set of iso-depth planes, as shown in
Figure 2. Each plane induces a special motion field between
the reference view and an arbitrary view which is aho-
mography[26], as shown in Figure 3. This class of motion
fields has the property of transforming quadrilaterals into
quadrilaterals and includes affine transforms as a special case.
In the particular case of rectified views [26], the motion vectors
are parallel to the baseline of the pair of views.

In this framework, the depth estimation is formulated in
terms of disparities, which are inversely proportional to depths.
Disparities are better suited to the geometry of the problem
at hand. They take into account the decreasing accuracy of
the depth estimation as depth increases and they are equal to
motion vectors in the case of rectified views.

Both the reference view and the disparity map are encoded
in a lossymanner. Let us denote the encoded reference view by
the vector̂I0 and the jointly estimated and encoded disparity
map by the vector̂δ. The viewIv is approximated by forward
motion compensation of the reference vieŵI0 using the
estimated disparity map̂δ, an operation denoted byMf

v (̂I0; δ̂)
where thef stands for ‘forward’.

The forward motion compensation applies the set of iso-
depth homographies to the reference viewÎ0 using an accumu-

(a) A reference views = 0 along with an arbitrary views = 1 and
an iso-depth plane.

(b) The two views and the associated motion fields.

(c) A disparity mapδ̂ and the binary maskm(δ̂, d) associated with
an iso-depth planesd.

Fig. 3. The projection of an iso-depth plane onto two views gives rise
to a motion field between the two which is a 2D homography. Onlythe
pixels with non-zero values in the binary maskm(δ̂, d) are kept after motion
compensation.

lation buffer and multiple texture-mapping operations, which
benefits from hardware acceleration [27]. The accumulation
buffer consists in a memory buffer, which is initially emptyand
progressively filled by the intensity values of texture-mapped
views. For each discrete disparity valued, the following three
steps are taken:

1) a binary maskm(δ̂, d) is defined, as shown in Figure 3,
which takes value one at pixels with disparity valued,

2) the homography associated with the disparity valued
is applied to both the reference vieŵI0 and the mask
m(δ̂, d) using texture mapping,

3) the values of the pixels in the accumulation buffer for
which the motion-compensated mask is one are replaced
by those of the motion-compensated view.

The disparities are processed in decreasing depth order so
that in step 3 the textures from closer iso-depth planes replace
those from further iso-depth planes, therefore correctly en-
forcing the occlusion relations between iso-depth planes.The
issues of resampling and hole filling are solved using bilinear
interpolation and texture propagation by Poisson equation[28].
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We shall encode both the imageÎ0 and the disparity map̂δ
in the wavelet domain. Letc andd be the column vectors of
their wavelet coefficients, respectively. The wavelet synthesis
operators relate these vectors by

Î0 , Tc and δ̂ , T (d), (2)

where the matrixT represents the linear wavelet transform for
the image and the functionT represents the integer-to-integer
wavelet transform for the discrete-valued disparity map.

We define two significance maps,σ(c) and σ(d), which
are binary vectors with value one in the presence of non-null
wavelet coefficients and zero otherwise. These maps are not
directional, i.e. they are the same for all directional subbands
at each scale of the 2D wavelet transform. In this way, we
shall be able to compareσ(c) andσ(d) even when the wavelet
operatorsT and T differ in their directional division of the
frequency plane.

In natural images, discontinuities in the disparity map are
usually associated with discontinuities in the image. When
they are not, it is very difficult to estimate the disparity
discontinuities from multiple views. Therefore, we can reduce
the data redundancy of the DIBR by coding the image and
the disparity significance maps jointly. This is done by coding
only the significance map of the imageσ(c) and assuming the
significant coefficients inσ(d) to be a subset of those inσ(c),
that is,

σn(c) = 0 ⇒ σn(d) = 0, ∀n ∈ [0, NmNn − 1] (3)

This joint encoding also reduces the complexity of the search
for the optimal vectord∗ by fixing a large number of its
coefficients to zero.

The total rateR(c, d) is then given by the sum of the rates
R(c), andR(d|σ(c)) and the RD problem is

min
c,d

1

N

Nv−1
∑

v=0

∥

∥Iv −Mf
v (Tc; T (d))

∥

∥

2

2

such thatR(c) + R(d|σ(c)) ≤ Rmax

(4)

whereRmax is the maximum rate allowed. The constraint (3)
appears implicitly in the rate constraint:R(d|σ(c)) takes the
value +∞ when this constraint is violated. Introducing the
Lagrange multiplierλ [20], (4) can be written as

min
c,d

1

N

Nv−1
∑

v=0

∥

∥Iv −Mf
v (Tc; T (d))

∥

∥

2

2
+λ (R(c) + R(d|σ(c))) .

(5)
This equation has three goals. First, it encodes the reference

view. Second, it estimates the disparity map, and therefore
allows the rendering of arbitrary views. Finally, it encodes
this disparity map. Solving this optimization shall be the topic
of the next section.

III. R ATE-DISTORTION OPTIMIZATION

A. Overview

Since (5) is non linear, solving it is not a trivial operation.
Therefore, we formulate several approximations to obtain a
computationally efficient method.

First, we ignore the issues of occlusions and resampling. In
this way, the motion-compensation operation becomes invert-
ible and the optimization problem can be defined either on
the rendered views or on the reference view. The latter option
turns out to be much more practical because it decouples
the encoded reference view from the motion compensation.
Mathematically, this assumption is equivalent to

∥

∥

∥
Iv −Mf

v (̂I0; δ̂)
∥

∥

∥

2

2
≈
∥

∥

∥
Mb

v(Iv; δ̂) − Î0

∥

∥

∥

2

2
(6)

whereMb
v(Iv; δ̂) denotes the backward-motion-compensated

view Iv. Equation (5) then becomes

min
c,d

1

N

Nv−1
∑

v=0

∥

∥Mb
v(Iv; T (d)) − Tc

∥

∥

2

2
+ λ (R(c) + R(d|c)) .

(7)
The MSE term in (7) depends on the wavelet vectorsc and

d in very different ways: it is quadratic inc but not ind. There-
fore, the minimization is solved using coordinate descent [29],
first minimizing c and thend. The minimization ofc ignores
the dependency withd due to the shared significance map.
This shall allow us to use classical wavelet coding techniques
for c and dynamic programming ford.

The optimization is initialized at high bitrate where the MSE
is virtually null, that is,

Tc ≈ I0 andMb
v(Iv; T (d)) ≈ I0. (8)

In general, we would need to iterate the successive opti-
mization process until convergence. Here, however, only one
iteration is run to reduce the computational complexity and
prevent erroneous disparities from introducing blur in the
encoded reference vieŵI0.

In the remainder of this section, we first describe the
optimization of the reference view in Section III-B. We then
detail the optimization of the disparity map, beginning with
the simpler case of one-dimensional views in Section III-C,
which we extend to two-dimensional views in Section III-E.
Finally, we present how a quality scalable bitstream can be
obtained in Section III-G.

B. Reference View

We start with the optimization of the wavelet coefficients
c of the reference view. Fixingd and using the high-bitrate
assumption (8), the optimization problem (7) becomes

min
c

1

NmNn

‖I0 − Tc‖
2
2 + λR(c). (9)

When the wavelet transformT is nearly orthonormal, like
the 9/7 wavelet [30] for instance, this equation can be further
simplified to

min
c

1

NmNn

∥

∥T
−1

I0 − c
∥

∥

2

2
+ λR(c), (10)

which is a standard problem in image compression and is
readily solved by wavelet-based coders [24].
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Fig. 4. An error matrixE from the Tsukuba image set [19] with two optimal paths overlaid, λ = 0 (dashed) andλ = ∞ (solid). Lighter shades of gray
indicate larger squared intensity differences.

C. One-Dimensional Disparity Map

The next step is to find an optimal solution for the wavelet
coefficientsd of the disparity map. To begin with, we consider
the special case of one-dimensional views (Nm = 1).

Fixing c, the optimization problem (7) becomes

min
d

1

N

Nv−1
∑

v=0

Nn−1
∑

n=0

(

Mb
v,n(Iv; δ̂n) − Î0,n

)2

+ λR(d|σ(c))

(11)
where Î0 , Tc andMb

v,n(Iv; d) denotes the intensity value
of the pixel in Iv which would correspond to the pixeln in
the reference view if the pixeln had the disparity valued.
Unlike in the previous section, the MSE term is not a quadratic
function of the wavelet coefficients, due to the non-linearity of
motion compensation. Instead, we take advantage of the fact
that the disparity map only takes a finite number of values.

The MSE term can be written in terms of an error matrix
E in which the entryEd,n gives the scaled square error that
the pixeln of Î0 would be associated with if it had disparity
d (see Figure 4). That is,

Ed,n ,
1

N

Nv−1
∑

v=0

(

Mb
v,n(Iv; r) − Î0,n

)2

. (12)

This error matrix is also called “disparity space image” [19]
and is independent of the disparity mapδ̂. Computing this
matrix has a complexity ofO(NNd) whereNd is the number
of disparity values.

We study the encoding of the disparity map using two
transforms, namely the Sequential (S) transform [24] and
a transform we call the Laplace (L) transform due to its
resemblance to the Laplacian pyramid [31]. Both provide a
compact representation of discrete and piecewise-constant dis-
parity maps. Both also induce graphs of dependencies between
their wavelet coefficients as trees, so that the problem can
be efficiently solved using dynamic programming [32]. They
differ in their redundancy, the former being non redundant.
They also differ in the complexity of their optimization with
regard to the number of disparity valuesNd, the latter being
of linear complexity and the former of quadratic complexity.

The analysis and synthesis operators of these two transforms
are given in Table I, where⌊x⌋ denotes the largest integer less
or equal tox. They relate the low-pass coefficientsl and the
high-pass coefficientsh between the levelj − 1 with finer
resolution and the levelj with coarser resolution.

The wavelet vectord is made of all the high-pass coeffi-
cientsh, along with the low-pass coefficientsl of the coarsest

level j , L− 1. The low-pass coefficientsl at the finest level
j , 0 are equal to the disparitieŝδ, that is,l(0)n = δ̂n.

The probability of the wavelet coefficients is approximated
as follows. The coefficientsl at the coarsest level and the
coefficientsh are assumed to be jointly independent. The
coefficientsl follow a uniform distribution. The coefficients
h are null with probability one if the corresponding image
coefficients are insignificant and otherwise follow a discrete
and truncated Laplace distribution with zero mean [24], that
is,

p(h(j)
n |σ(j)

n (c)) =







1
h
(j)
n =0

if σ
(j)
n (c) = 0,

1
Z

e−
|h

(j)
n |
b 1

|h
(j)
n |≤Nd

otherwise,
(17)

whereb is a parameter to be estimated andZ is a normalizing
constant. This probability distribution defines the entropy of
the data [33], that we use as an approximation of the actual
bitrate. The bitrate, in bits per pixel, is therefore

R(d|σ(c)) = −

L−1
∑

j=0

Nh(j)−1
∑

n=0

log2

(

p(h(j)
n |σ(j)

n (c))
)

+ cst

(18)
wherelog2 denotes the logarithm to base 2,cst is a constant
term independent ofd andNh(j) is the number of high-pass
coefficients at levelj. We introduce the cost function

C(h(j)
n ) ,

{

+∞ if σ
(j)
n (c) = 0 andh

(j)
n 6= 0,

µ|h
(j)
n | otherwise

(19)

whereµ , λ/(b log 2) acts as a smoothness factor. Using this
cost function, the equation of the bitrate (18) becomes

R(d|σ(c)) =
1

λ

L−1
∑

j=0

Nh(j)−1
∑

n=0

C(h(j)
n ) + cst (20)

and the optimization problem (11) can be written as

min
d

Nn−1
∑

n=0

E
l
(0)
n ,n

+

L−1
∑

j=0

Nh(j)−1
∑

n=0

C(h(j)
n ). (21)

D. Dynamic Programming

The optimization problem (21) is still a minimization over
a space with large dimension. However, it can be solved
recursively by a series of minimizations over small search
spaces. The approach consists in using the commutativity
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L-transform S-transform
analysis synthesis analysis synthesis

l
(j)
n =

⌊

l
(j−1)
2n

+l
(j−1)
2n+1

2

⌋

h
(j−1)
2n = l

(j−1)
2n − l

(j)
n

h
(j−1)
2n+1 = l

(j−1)
2n+1 − l

(j)
n

(13)

l
(j−1)
2n = l

(j)
n + h

(j−1)
2n

l
(j−1)
2n+1 = l

(j)
n + h

(j−1)
2n+1

(14)

l
(j)
n =

⌊

l
(j−1)
2n

+l
(j−1)
2n+1

2

⌋

h
(j)
n = l

(j−1)
2n − l

(j−1)
2n+1

(15)

l
(j−1)
2n

S0= l
(j)
n −

⌊

h
(j)
n

2

⌋

+ h
(j)
n

l
(j−1)
2n+1

S1= l
(j)
n −

⌊

h
(j)
n

2

⌋

(16)

TABLE I

ANALYSIS AND SYNTHESIS OPERATORS OF THELAPLACE (L) AND SEQUENTIAL (S) TRANSFORMS(SEE TEXT FOR DETAILS).

E:,0 E:,1 E:,2 E:,3

l
(0)
0 l

(0)
1 l

(0)
2 l

(0)
3

C(h
(0)
0 ) C(h

(0)
1 ) C(h

(0)
2 ) C(h

(0)
3 )

l
(1)
0

h
(0)
0 h

(0)
1

l
(1)
1

h
(0)
2 h

(0)
3

C(h
(1)
0 ) C(h

(1)
1 )

l
(2)
0

h
(1)
0 h

(1)
1

Fig. 5. Dependency graph of a three-level L transform. The coefficients in
bold are those included in the wavelet vectord. Gray nodes represent the
MSE and rate terms of the RD optimization. The dashed box highlights the
two-level L transform associated with (22).

E:,0 E:,1 E:,2 E:,3

l
(0)
0 l

(0)
1 l

(0)
2 l

(0)
3

C(h
(1)
0 ) C(h

(1)
1 )

l
(1)
0

h
(1)
0

l
(1)
1

h
(1)
1

C(h
(2)
0 )

l
(2)
0

h
(2)
0

Fig. 6. Dependency graph of a three-level S transform. The coefficients in
bold are those included in the wavelet vectord. Gray nodes represent the
MSE and rate terms of the RD optimization.

of the sum and min operators to group the terms of the
summation together based on the variables they depend on.
This is possible due to the choice of wavelets, which do not
introduce loops in the dependency graph of the group of terms,
as shown in Figures 5 and 6. In these figures, the notationE:,n

denotes the columnn of the error matrixE. This column
vector contains the errors of the different disparity values at
the pixel locationn.

Example 1:Let us consider a simple example to illustrate
the algorithm. The optimization problem associated with a
two-level L transform, emphasized by a dashed box in Fig-

ure 5, is given by

min
l
(1)
0 ,h

(0)
0 ,h

(1)
1

(

E
l
(1)
0 +h

(0)
0 ,0

+ E
l
(1)
0 +h

(0)
1 ,1

+C(h
(0)
0 ) + C(h

(0)
1 )
)

.

(22)

By grouping the terms of the summation together and com-
muting the min and sum operators, it can be rewritten as

min
l
(1)
0

(

min
h
(0)
0

(

E
l
(1)
0 +h

(0)
0 ,0

+ C(h
(0)
0 )
)

+ min
h
(0)
1

(

E
l
(1)
0 +h

(0)
1 ,1

+ C(h
(0)
1 )
)

) (23)

which reduces the complexity from cubic to quadratic.
Next, we illustrate how to solve the inner minimizations.

Let us consider the minimization overh
(0)
0 with a smoothness

factor µ = 0.5. We assume that the disparity values range
from 0 to 5 and solve for the casel(1)0 = 2. Let us assume
that the first column vector of the error matrixE is

l
(0)
0 0 1 2 3 4 5

E
T
:,0 2 5 3 0.25 4 2

(24)

Stacking the values of the cost functionC(h
(0)
0 ) for eachh

(0)
0

(note thath(0)
0 = l

(0)
0 − l

(1)
0 = l

(0)
0 − 2) into a cost vectorC

using (19) gives

l
(0)
0 0 1 2 3 4 5

h
(0)
0 −2 −1 0 1 2 3
CT 1 0.5 0 0.5 1 1.5

(25)

The sum of these two vectors is

l
(0)
0 0 1 2 3 4 5

E
T
:,0 + CT 3 5.5 3 0.75 5 3.5

(26)

The minimum is therefore0.75, which is reached atl(0)0 = 3.
By the definition of the synthesis operator (14), it follows that
the optimal high-pass coefficient associated withl

(1)
0 = 2 is

h
(0)
0 = 1.
In the general case, the recursive minimization is defined

using a pyramid of error matrices{E(j), j ∈ [0, . . . , L − 1]}.
The error matrix at the finest levelj = 0 is defined by

E
(0) , E. (27)
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The error matrices of the L transform at coarser levels are
given by

E
(j)
d,n = min

h
(j−1)
2n

(

E
(j−1)

d+h
(j−1)
2n ,2n

+ C(h
(j−1)
2n )

)

+ min
h
(j−1)
2n+1

(

E
(j−1)

d+h
(j−1)
2n+1 ,2n+1

+ C(h
(j−1)
2n+1 )

)

.
(28)

The error matrices of the S transform at coarser levels are
given by

E
(j)
d,n = min

h
(j)
n

(

E
(j−1)

S0(d,h
(j)
n ),2n

+ E
(j−1)

S1(d,h
(j)
n ),2n

+ C(h(j)
n )
)

(29)

whereS0(.) andS1(.) denote the synthesis operators defined
by (16).

Computing an error matrixE(j) of the S transform has a
complexity quadratic in the number of disparity valuesNd:
error values need to be computed for each disparity valued

and each value of the high-pass coefficienth
(j)
n . On the other

hand, an error matrixE(j) of the L transform can be computed
with only linear complexity, as was shown in [34] in the case
of Markov random fields with linear smoothness function.

The optimization problem (21) becomes simply

min
l
(L−1)
n

E
(L−1)

l
(L−1)
n ,n

(30)

for each low-pass coefficientl(L−1)
n at the coarsest levelL−1.

The pyramid of error matrices is associated with a pyramid
of matrices of high-pass coefficients{H(j), j ∈ [0, . . . , L −
1]}. At each level, they store the high-pass coefficients which
achieve the minima in (28) or (29). Once the optimal low-
pass coefficientsl(L−1)∗

n are known, the low-pass and high-
pass coefficients at other levels are obtained by backtracking
using the matricesH(j) and the synthesis operators (16) or
(14).

Therefore, the overall algorithm to solve (21) is the follow-
ing:

1) the initialization creates the error matrixE(0),
2) the bottom-up passcomputes the matricesE(j) and

H
(j),

3) the coarsest-level minimizationfinds the optimal low-
pass coefficientsl(L−1)∗

n ,
4) the top-down passbacktracks to compute the optimal

low-pass and high-pass coefficientsl
(j)∗
n andh

(j)∗
n at all

levels.
At the end, both the globally optimal disparity map̂δ∗

and the globally optimal wavelet vectord∗ are known. The
initialization has a complexity ofO(NNd), the bottom-up pass
of O(NnN2

d ) in the case of the S transform andO(NnNd) in
the case of the L transform, the coarsest-level minimization of
O(NnNd) and the top-down pass ofO(Nn).

This algorithm shares similarities with quadtree-based mo-
tion estimation [23]. In quadtree estimation, small minimiza-
tions are solved at each node of the tree to find optimal motion
vectors and decide whether to split or merge. In the proposed
algorithm, small minimizations are also solved at each node,
but they find optimal wavelet coefficients instead. A major
difference between quadtrees and wavelets lies in the way the
data is stored in the tree. Quadtrees store the data at their leaves
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(a) Four-band division

��������
������

�������
�
�����

�

�

������
��������

������
��������

���������
������������

������
���������������

����� �������

������� ���������

��

�

��������
���������

�������
�
���������

��������
������������

�������
�
������������

����

����

������

������

���

���

(b) Three-band division

Fig. 7. Two divisions of the frequency plane and the associated graphs of
dependencies between the coefficients of the S transform.

using independent coefficients, while wavelets spread the data
over the entire tree using differential coefficients. Therefore,
wavelets offer resolution scalability while quadtrees do not.
Another difference lies in the induced smoothness. Quadtrees
enforce constant values inside blocks but no smoothness
between blocks, while wavelets induce a smoothness between
all pixels. Our experimental results shall show that the latter
reduces spurious noise in the estimated disparity maps.

E. Two-Dimensional Disparity Map

We now extend the optimization procedure to two-
dimensional views. The error matrixE(0)

d,n becomes an error

tensorE(0)
d,m,n with three dimensions: rowsm, columnsn and

disparitiesd. It is defined as

E
(0)
d,m,n ,

1

N

Nv−1
∑

v=0

(

Mb
v,m,n(Iv; d) − Î0,m,n

)2

. (31)

Its computation has a complexity ofO(NNd), which remains
linear in all the variables.

The two-dimensional extension of the L transform is also
straightforward. Its synthesis operator (14) simply becomes



























l
(j−1)
2m,2n = l(j)m,n + h

(j−1)
2m,2n

l
(j−1)
2m+1,2n = l(j)m,n + h

(j−1)
2m+1,2n

l
(j−1)
2m+1,2n+1 = l(j)m,n + h

(j−1)
2m+1,2n+1

l
(j−1)
2m,2n+1 = l(j)m,n + h

(j−1)
2m,2n+1

(32)
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The computational complexity at each node of the dependency
tree remainsO(Nd), with a total complexity ofO(NmNnNd)
for the bottom-up pass.

The two-dimensional extension of the S transform is slightly
more complex. We follow the classical approach of apply-
ing the one-dimensional wavelet transform twice at each
scale [30], once horizontally and once vertically. However, we
depart from the usual four-band division of the frequency plane
(high-high, high-low, low-high, low-low) shown in Figure 7(a).
If we followed this division, the minimizations at each node
of the dependency tree (29) would depend on four variables:
ll

(j)
m,n, hl

(j)
m,n, lh

(j)
m,n andhh

(j)
m,n. Therefore, the complexity of

each minimization would grow fromO(N2
d ) to O(N4

d ), which
is only feasible when few disparity values are allowed.

Instead we propose to divide the frequency plane into only
three bands at each scale, as shown in Figure 7(b). The first
transform is applied vertically, leading to two bands (low,
high). The second transform is applied horizontally, but only
onto the previous low band. This way the complexity at each
node of the dependency tree remainsO(N2

d ), with a total
complexity ofO(NmNnN2

d ) for the bottom-up pass.

F. Bitrate Optimization

The parameterb of the Laplace distribution is estimated
using bracketing and a search akin to bisection [13, 28].
A large bracket is initially chosen, whose size is iteratively
reduced. At theith iteration, the optimal coefficients{l, h} are
found and the actual parameterb(i) is estimated by minimizing
the Kullback-Leibler divergence [33] between the histogram of
the coefficients{h} and the Laplace distribution (Equation 17).
The current Lagrange multiplierλ(i) is obtained using the
equation

λ(i) = µ(i)b(i) log 2 (33)

and the parameterµ is updated by

µ(i+1) =
λ

λ(i)
µ(i) (34)

whereλ is the target RD slope used to encode the reference
view. This update equation has the advantage of being inde-
pendent of the bracket size, derivative-free, and exact when λ
is a linear function ofµ. The iterations end when the relative
error |λ − λ(i)|/λ becomes small enough.

The final bitstream of the disparity map is generated by
fixed-length coding of the low-pass coefficients ind, fixed-
length coding of the sign of the high-pass coefficients and
arithmetic coding [33] of their absolute values. Only the high-
pass coefficients for whichσ(c) is one are encoded.

G. Quality Scalability

The wavelet-based encoding of the reference views al-
lows both resolution and quality scalabilities [24]. As is,the
proposed wavelet-based encoding of the disparity map only
allows resolution scalability. Quality scalability is achieved by
introducing quality layers [24].

The qth quality layer is associated with a vector of wavelet
coefficientsd(q), which is encoded using Differential Pulse

Code Modulation (DPCM) between quality layers. The opti-
mization problem then becomes

min
{d(q)}

Nq
∑

q=1

(

1

N

Nv−1
∑

v=0

∥

∥

∥
Mb

v(Iv; T (d(q))) − Î
(q)
0

∥

∥

∥

2

2

+ λ(q)R(d(q) − d
(q−1)|c(q), d(q−1))

)

(35)

whereNq is the number of quality layers,Î(q)0 is the quantized
reference view from theqth quality layer andλ(q) is the
associated Lagrange multiplier. The vectord(0) is chosen to
be the null vector. The differential vectorsd(q) − d(q−1) are
assumed to be jointly independent and to follow a discrete and
truncated Laplace distribution parameterized byb(q).

The optimization problem is solved sequentially for each
d
(q). The minimization for theqth quality layer is given by

min
d(q)

1

N

Nv−1
∑

v=0

∥

∥

∥
Mb

v(Iv; T (d(q))) − Î
(q)
0

∥

∥

∥

2

2

+ λ(q)R(d(q) − d
(q−1)|c(q), d(q−1))

(36)

which is similar to the minimizations described in the previous
sections and can be solved in the same way.

IV. EXPERIMENTAL RESULTS

We present experimental results on two image sets, Tsukuba
and Teddy [19], displayed in Figure 8. In both cases, the
images are rectified. Note that the proposed RD optimization
framework is the same whether images are rectified or not. The
Tsukuba set has a fairly limited range of disparities, with only
16 disparity numbers, i.e., pixel shifts due to view changes
are up to 16. On the other hand, the Teddy set has a much
larger range, with 60 disparity numbers. As a consequence,
the Teddy set contains much larger areas of occlusions and
disocclusions.

Experiments have been run in the grayscale domain with
intensity values in the range[0, 1]. A border of two pixels has
been removed around the images of Tsukuba to compensate
for camera artifacts. The experiments have been conducted
using nine views with the central view as reference for the
Tsukuba set, and two views with the left view as reference
for the Teddy set. In the following, the bitrate is defined in
bits per reference-view pixels, which does not depend on the
total number of views in the optimization.

In order to benchmark the performances of the proposed
RD-optimized wavelet codecs, they are compared against two
other classical codecs, one based on block matching [6, 10]
and the other on quadtrees [23, 35]. These two codecs usually
handle 2D motion vectors instead of 1D disparities. To obtain a
fair comparison, they are adapted to perform one-dimensional
optimizations. The encoding is performed in closed loop to
obtain the least possible distortion at the decoder. The block-
based encoder simply minimizes the MSE of8×8 blocks and
generates the bitstream using fixed-length codes. The quadtree-
based encoder performs a full RD-optimization with variable-
size blocks, as detailed in [23]. The amount of disparity
regularization introduced therefore depends on the bitrate.
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(a) Tsukuba image set

(b) Teddy image set

Fig. 8. The two sets of images used in the experiments (from [19]).

All codecs rely on the QccPack implementation of
SPIHT [36] to encode the reference view. Therefore, the
wavelets, quadtrees and blocks are all optimized using the
same error tensorsE. The codecs based on quadtrees and
wavelets allocate automatically the bitrate of disparity maps.
Therefore, the codecs are compared at RD points with equal
RD slopes, but possibly different total bitrates.

Figure 9 illustrates the resolution scalability of the proposed
wavelet-based representations. Unlike quadtrees which store
the disparity information only at their leaves, wavelets store
this information over the entire tree, which allows partial
decoding of the tree at multiple resolutions. In the experiments,
the wavelet decomposition is performed completely, that is,
until the low-pass band is reduced to a unique pixel. Exper-
iments have shown that stopping the decomposition earlier,
as is usually done in image coding, does not allow enough
information aggregation in large textureless regions and leads
to erroneous disparity estimations.

Figures 10 and 11 show the DIBR encoded at three RD
slopesλ, approximately1 × 10−2, 2 × 10−3 and 4 × 10−4,
which correspond to reference views encoded at bitrates of
0.1bpp,0.5bpp and1.0bpp.

The block-based encoder appears extremely sensitive to
the lack of image texture. At low bitrates, the disparity map
becomes extremely noisy and is a poor estimation of the
ground truth. The noise is much reduced at higher bitrates, but
remains significant in some areas like the upper-right corner
of Tsukuba or the roof of the house in Teddy. This seriously

(a) Level 0 (b) Level 2

(c) Level 4 (d) Level 6

Fig. 9. Disparity map of the Teddy set at four resolution levels, showing the
resolution scalability of the wavelet-based representation.

hinders the synthesis of novel viewpoints.
The quadtree-based encoder proves to be much more re-

liable. Using the RD-optimization, it is able to gracefully
decrease the quality of the disparity map when the bitrate is
reduced. Not only do the disparity maps become coarser, but
they also tend to have less spurious noise because such a noise
has a high bitrate cost.

The wavelet-based encoders, using both the S transform and
the L transform, demonstrate a similar behavior. Compared
to the quadtree-based encoder, they tend to generate disparity
maps with less spurious noise. In quadtrees, the rate constraint
favors larger blocks. However, the disparity values between
blocks are independent. In wavelets, on the other hand, the
rate constraint favors small wavelet coefficients, which creates
dependencies between blocks and enforces an inter-block
smoothness. The superiority of wavelets over quadtrees is
especially noticeable in the case of larger disparity ranges,
which makes them more effective at estimating and encoding
the complex geometry of realistic 3D scenes.

All of these encoders have issues in areas of occlusions and
disocclusions, as can be seen for instance around the chimney
of the Teddy set. This creates large disparity errors which are
detrimental for novel-view synthesis. This issue is confirmed
by Figure 12. It shows two views synthesized from the DIBR
encoded at the RD slope2× 10−3, along with the differences
between the synthesized and actual views. The dominant noise
is due to occlusions and disocclusions. It has two sources.
First, in these areas there are no correspondences between
images, which leads to erroneous disparity estimations. Sec-
ond, the hole-filling process is efficient when disocclusions are
small but has difficulties handling large occlusions like the one
on the right of the Teddy set.

We confirm this qualitative analysis by a quantitative one.
Figure 13 shows the RD performances of all the codecs. The
block-based codec is the least efficient. Without some kind
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Fig. 10. The DIBR of the Teddy set at three RD slopes corresponding to
reference-view bitrates of 0.1bpp, 0.5bpp and 1.0bpp (fromleft to right). The
S and L transforms generate disparity maps which degrade gracefully with
the bitrate and contain less spurious noise than quadtrees or blocks.

of regularization this method is not suitable for novel view
synthesis, which underlines the interest of jointly estimating
and encoding the disparity map. In Tsukuba, where the dis-
parity range is small, quadtrees outperform the L transform
by up to 0.09dB and the S transform by up to 0.12dB. On
the other hand, in Teddy, where the disparity range is much
larger, the wavelets outperform quadtrees by up to 0.84dB
for the L transform and up to 0.70dB for the S transform at
high bitrate. Both the L and the S transform offer similar RD
performances. The advantage of the L transform is primarily
the lower computational complexity of its optimization.

Figure 14 compares the quality-scalable versions of the
wavelets to their non-scalable counterpart. In Tsukuba, quality
scalability has a PSNR cost of at most 0.29dB at high bitrate,
both for the S and L transform. In Teddy, the PSNR cost is
lower for the L transform, with at most 0.34dB at high bitrate,
than for the S transform, with at most 0.47dB at high bitrate.

Finally, Figure 15 reports the optimized bitrate allocation
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Fig. 11. The DIBR of the Tsukuba set at three RD slopes corresponding to
reference-view bitrates of 0.1bpp, 0.5bpp and 1.0bpp (fromleft to right). The
S and L transforms generate disparity maps which degrade gracefully with
the bitrate and contain less spurious noise than quadtrees or blocks.

between the reference view and the disparity map. In these
experiments, the allocation remains stable across most of the
range of bitrates, with between 13% and 23% of the total
bitrate dedicated to the disparity map. This is consistent with
the heuristic ratio of 10% proposed in [9]. The allocation
is similar whether the baseline is small, like in Tsukuba, or
reasonably large, like in Teddy.

V. CONCLUSION

This paper has proposed a novel wavelet-domain DIBR
codec able to approximate static plenoptic functions locally.
The wavelet coefficients for both the images and the disparity
maps have been estimated and encoded jointly to provide an
optimized bitrate allocation and reduce the ambiguity of the
disparity estimation. In spite of the non-linearity of the opti-
mization problem, a globally-optimal encoding of the disparity
maps has been found using dynamic programming along the
tree of integer wavelet coefficients. In addition to the resolution
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(a) Tsukuba

(b) Teddy

Fig. 12. Views synthesized from the DIBR with a reference view encoded
at 0.5bpp (left) and differences with the original views (right). At low
quantization noise, the errors are mostly due to occlusions.
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(b) Teddy

Fig. 13. Rate-distortion performances of the encoders based on wavelets (S
and L transforms), quadtrees and blocks. Wavelets are superior to quadtrees
and blocks in the case of larger disparity ranges.
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(b) Teddy

Fig. 14. RD loss due to quality-scalable coding. The loss remains limited
over the whole range of bitrates.
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(b) Teddy

Fig. 15. Fraction of the bitrate allocated to the disparity maps. Except at
very low bitrates, the rate ratios are stable with values between 13% and 23%.

scalability intrinsic to wavelets, quality scalability has been
introduced using quality layers. Finally, experimental results
on real data have confirmed the performances of the proposed
codec. Future work shall aim at extending the optimization
of the disparity map to more general integer wavelets, at
mitigating the issues due to occlusions and at compressing
dynamic plenoptic functions.
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