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Abstract—We propose a wavelet-based codec for the static A large number of methods have been proposed to record
Depth-Image-Based Representation (DIBR), which allows eivers  and encode the plenoptic function [4]. They widely differ in
to freely choose the viewpoint. The proposed codec jointly the amount of 3D geometry used to encode the data, which

estimates and encodes the unknown depth map from multiple f trv at all liaht field) t t
views using a novel Rate-Distortion (RD) optimization schee. ranges from no geometry at all (e.g. light field) to an extrigme

The rate constraint reduces the ambiguity of depth estimatn accurate geometry (e.g. texture mapping). On the one hand,
by favoring piecewise-smooth depth maps. The optimizationis relying on the geometry has the advantage of requiring fewer

efficiently solved by a novel dynamic programming along tres of cameras to record the plenoptic function and allowing the
integer wavelet coefficients. The codec encodes the imagedahe reduction of redundancies between the recorded views [5, 6]

depth map jointly to decrease their redundancy and to provice a .
RD-optimized bitrate allocation between the two. The codealso On the other hand, using the geometry has the drawback of

offers scalability both in resolution and in quality. Experiments  limiting the realism of the synthesized views and requiring
on real data show the effectiveness of the proposed codec. difficult estimation of the 3D geometry.
Index Terms— Free-viewpoint rendering, image-based render- AN €fficient trade-off on the 3D geometry, called depth-
ing, 3D-TV, Depth-Image-Based Representation (DIBR), deh Image-Based Representati@DIBR), consists in approximat-
estimation, joint coding, scalable coding, rate-distorton optimiza-  ing the plenoptic function using pairs of images and depth
tion maps [7]. Now part of the MPEG-4 standard [8, 9], this
representation allows arbitrary views to be rendered in the
|. INTRODUCTION vicinity of these pairs. Since depth maps tend to have lower
REE-VIEWPOINT Three-Dimensional Television (3D-entropies than images, the DIBR leads to compact bitstreams
TV) aims at providing an enhanced viewing experienddoreover, realistic images can be efficiently synthesizedf
not only by letting viewers perceive the third spatial dirsien the DIBR using Image-Based Rendering (IBR) and depth maps
via stereoscopy but also by allowing them to move insidéo not need to be estimated extremely accurately, as long as
the 3D video and freely choose the viewing location thetpe viewpoint does not change too much.
prefer [1]. The free-viewpoint approach is also useful for Encoding the DIBR presents two difficulties. First, the dept
multi-user autostereoscopic 3D displays [2], which have toaps are unknown. Therefore, not only do they have to be
generate a large number of viewpoints. encoded, but they also have to be estimated. Second, the
The fundamental problem posed by 3D-TV lies in theelation between the depth maps and the distortion of the
massive amount of data required to represent the set of ltnoptic function is highly non-linear, which makes thedra
possible views or, equivalently, the set of all light raysttie Distortion (RD) optimization difficult. In particular, findg an
scene. This set of light rays, called thkenoptic functiof3], optimal bitrate allocation between images and depth maps is
lies in general in a seven-dimensional space. Each light ragn trivial.
travels along a line, which is described by a point (three A number of methods have avoided these issues by exclud-
dimensions), an angular orientation (two dimensions) andirgg depth maps from the RD problem. For instance, in [6, 10]
time instant (one dimension). The last dimension desctifes depth maps are obtained using block-based depth estimation
spectrum, or color, of the light rays. By comparison, 2D wisle essentially a motion estimation, and encoded ihossless
only lie in a four-dimensional space made of two angles, tim&shion. As an alternative to blocks, depth can also be esti-
and color. Therefore, 3D-TV requires the design of a novelated using meshes [11, 12] or pixel-wise regularizatidn [7
video chain [1]. However, in such methods the image encoder and the depth
L _ _ encoder operate at different RD slopes, which penalizes the
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Another way of handling the non-linearity is to assume that lo_ | _|Reference view| | ¢ |Reference view| f

. A . lo
depth maps take a finite number of discrete values. Under so ‘ coding - [_decoding .
constraints on the dependencies between depth valuesliglob A oo NOVG; viewl g
optimal solutions can be found using Dynamic Programming ‘ synthesis

' Novel view

(DP) [16]. For instance, optimal solutions exist when dep L es%ﬁz‘;ﬂ%ngngidj;Dizr;igtdyir:gapjé ' vowpoint

maps are encoded using Differential Pulse Code Modulati®tiie views L”s’b’e’h’caa’é;/é;h;ﬁéia;”J L= et
(DPCM) [17] or quadtrees [18]. This approach does not
require any groundtruth: the estimation and encoding of tl#g. 1. Overview of the proposed codec. The encoder joirgljmeates and

depth maps are carried out jointly. It also takes advantdge&jcodes a DIBR at the RD slopefrom the set of viewg(l, }. The image and
the bitrat traint to f th depth h I.%he disparity map are represented by the vectors of waveéfficientsc and
€ Dbitrate constraint {o Tavor smoo epth maps, much Qespectively, whose joint entropy is reduced by sharingstgeificance map

ad-hoc smoothness terms do in computer vision [19], whiehc). At the decoder, an imagk and a disparity map are reconstructed,
reduces the ambiguity of the estimation. which allow novel viewsl to be synthesized from arbitrary viewpoints.

There is a close relation between depth maps and 2D mo-
tion fields: depth maps define 3D surfaces, whose projection ) o )
onto image planes gives rise to motion fields. Therefore, theThe remainder of the article is organized as follows. Sec-
techniques designed to solve the RD problem of classical 3180 Il describes the proposed codec and the RD problem at
video coding [20] can usually also be applied to DIBR.Among‘i‘gd' while Section Il details the RD optimization of the
these techniques, those described in [21, 22] are related¥8R. Finally, Section IV presents our experimental result
the proposed wavelet-based approach. In these codecgsmaPMe preliminary results appeared in [25].
are split into blocks of variable sizes using quadtrees, and
the motion vectors are DPCM coded. They achieve global Il. PROPOSEDCODEC
optimality using DP. However, besides being not scalahksr t
complexity is exponential in the number of block sizes, wahic
limits the range of block sizes they can handle.

In this paper, we propose a new wavelet-based DIBR co
which performs a RD-optimized encoding of multiple view

It differs from classical wavelet-based codecs in that pért The DIBR consists in a subset of the views, called reference

the data to be transformed (i.e. the depth map)rigknown. . . :
Here, as shown in Figure 1, both the depth estimation, t\ﬁle?ws’ along with unknown depth maps. In the following,

) . . . we limit our study to the case of static grayscale views.
depth encoding and the image encoding are performed Jomﬁ this case, the DIBR provides an approximation to five-
Although the problem is non-linear, we present a codec ableoti '

Hiciently find optimal soluti ithout tina o liak mensional plenoptic functions with three spatial dimens
emmciently find optimai sofutions without resorting to laeza- oy angular dimensions. Since the DIBR only offers a

ton. _We_ show that when the _de_p_th maps are representgd pal Y approximation of the plenoptic function, the viewers
special integer wavelets, their joint estimation and cgdifa are free to choose arbitrary viewpoints, but only inside a

RD-optimization can be. e;fﬁmently solved using DP .alongxleighborhood Of Views (NOV). A natural choice for the shape
the tree of wavelet coefficients. The DP we introduce in thi the NOV is to take the union of a set of hypervolumes

paper differ from the existing one of quadrees [18, 23], ade of 3D spheres in space and 2D discs in angle, with one

dlsculsstedf In Sect!on “I'.D' The Rtlﬁ-gptltmhlzanon of;hehgﬁe; hypervolume associated to each pair of image and depth map.
Wavelets Tavors piecewise-smooth depth maps, Which rédueg, .o e approximation does not usually degrade abruptly

the estimation ambiguity and leads to compact representaii when the distance increases, the decoder could actuatlycenf

of thg data. The jqinF enco.ding of the images and demh MaP3soft” NOV boundary by discouraging the viewer to choose
provides a RD-optimized bitrate allocation. Furthermaoeng a viewpoint outside of the NOV without forbidding it.

the fact that depth discontinuities usually happen at image

edaes. it reduces the redundancies between depth maos T(f/le distortion introduced by the codec is measured using
edges, ) o P PS A ean-Square Error (MSE) between the recorded views and
images by coding the two wavelet significance maps only

. : . e views rendered from the DIBR. Denoting tfé& recorded
once. The complexity of the proposed codec is only linear

. " view and its rendered counterpart by respectively the colum
in the number of wavelet decomposition levels, due to the A . . .

. . vectorsl, andl, obtained by stacking all the pixels together,
special tree structure we introduce.

. . the distortion can be written as
In addition, the proposed codec offers scalability both in

resolution, using wavelets, and in quality, using quakiydrs. A 1 N1
The former allows servers to efficiently stream data to digpl D({lu}, {lo}) = N,,N,,N, Z
devices with inhomogeneous display resolutions and inside v=0
online virtual 3D worlds, where the DIBR may actually onlywhere|.||» denotes the 2-normy,, and N,, are respectively
cover a small portion of the display due to its distance to tllke number of rows and columns in the views a¥gd is the
viewpoint. The latter lets servers efficiently stream dataro number of views. We denote by} £ N,,N, N, the total
networks with inhomogeneous capabilities. In both cades, thumber of pixels. The distortion takes into account errors o
RD point is chosen on the fly at the server by truncating thmth the reference views included in the DIBR and the novel
bitstream [24]. views rendered from the DIBR.

First, we define the RD problem that shall be solved by the
proposed codec. As illustrated in Figure 1, the encoderstake
et of synchronized views as input and represents them using
DIBR. The decoder receives the DIBR and synthesizes
Shovel views at 3D locations chosen by the viewers.
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(a) A reference views = 0 along with an arbitrary views = 1 and
Fig. 2. The spatial extent of a NOV (sphere) with one pair cdgaand depth an iso-depth plane.

map, along with seven views (cones). The central dark cos@uketes the S S S e Y
reference view. The planes represent iso-depth surfad@sn@el courtesy \\\\::
of Google). \ i::\ :

—
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The decoder renders novel views using the nearest pair of \\\ \\\\ \E\ .
image and depth map. The total distortion is then the sum j h A \\ AR
of the distortions associated with each pair of image and View 1
depth map. Likewise, the pairs of images and depth maps are (b) The two views and the associated motion fields.
encoded independently of one another, so that the totalt®itr
is also the sum of the bitrates associated with each pair.

As a consequence, the RD problem can be solved for
each pair of image and depth map independently. Rendering
and encoding multiple pairs jointly might lead to increased
RD performances. However, this would introduce complex
data dependencies which cannot be trivially handled by the
proposed method. Moreover, this would reduce the ability of Disparity map Binary mask
the decoder to access views randomly [4]. Without loss of (c) A disparity maps and the binary maskn($, d) associated with
generality, the remainder of this article only considere th " 1s0-depth planes.
case where a unique pair is encoded and the reference vigyv 3. The projection of an iso-depth plane onto two viewsesirise

P A A A R R N

is indexed byv = 0. to a motion field between the two which is a 2D homography. Cthly
The quantized depth map takes a finite number of discr%éilse"r‘]”stgtigﬂn'zem values in the binary maso, d) are kept after motion

values, which define a set of iso-depth planes, as shown in
Figure 2. Each plane induces a special motion field between

the refehrer;%e viewhand an Fgrbitra;y ¥iﬁw \?’hiCh fisha;_ lation buffer and multiple texture-mapping operations,akh
mography[26], as shown in Figure 3. This class of mo 19 enefits from hardware acceleration [27]. The accumulation

fields _has the property of trgnsforming quadrilateral_s imt?uffer consists in a memory buffer, which is initially emptyd
guadrilaterals and includes affine transforms as a spe&sa.c progressively filled by the intensity values of texture-ipeg

In the pa|r|t|<|:lila;r::asbe of Ir_ect|f|?(:hwews_ [2?]’ _the MOUONMEE  \jeys. For each discrete disparity valdethe following three
are parallel to the baseline of the pair of views. steps are taken:

In this framework, the depth estimation is formulated in . . ] o
terms of disparities, which are inversely proportionalépths. 1) @ binary maskn(o, d) is defined, as shown in Figure 3,
Disparities are better suited to the geometry of the problem  Which takes value one at pixels with disparity valie
at hand. They take into account the decreasing accuracy of) the homography associated with the disparity vaiue
the depth estimation as depth increases and they are equal to IS @pplied to both the reference view and the mask
motion vectors in the case of rectified views. m(9,d) using texture mapping, _

Both the reference view and the disparity map are encoded) the values of the pixels in the accumulation buffer for
in alossymanner. Let us denote the encoded reference view by ~ Which the motion-compensated mask is one are replaced
the vectorl, and the jointly estimated and encoded disparity ~ PY those of the motion-compensated view.
map by the vectod. The viewl, is approximated by forward ~ The disparities are processed in decreasing depth order so
motion compensation of the reference viéw using the that in step 3 the textures from closer iso-depth planescepl
estimated disparity mag, an operation denoted byt/ (lo;0) those from further iso-depth planes, therefore correctly e
where thef stands for ‘forward’. forcing the occlusion relations between iso-depth plamés.

The forward motion compensation applies the set of is@ssues of resampling and hole filling are solved using béline
depth homographies to the reference vigwsing an accumu- interpolation and texture propagation by Poisson equ#igh



We shall encode both the imagieand the disparity map First, we ignore the issues of occlusions and resampling. In
in the wavelet domain. Let andd be the column vectors of this way, the motion-compensation operation becomes tinver
their wavelet coefficients, respectively. The wavelet bgsis ible and the optimization problem can be defined either on
operators relate these vectors by the rendered views or on the reference view. The latter optio

N N turns out to be much more practical because it decouples
lo = Tc and 0= 7(d), @ the encoded reference view from the motion compensation.
where the matrixT represents the linear wavelet transform foMathematically, this assumption is equivalent to
the image and the functigh represents the integer-to-integer
wavelet transform for the discrete-valued disparity map.

We define two significance mapsc) and o(d), which
are binary vectors with value one in the presence of non-nylhere Mg(hj; 3) denotes the backward-motion-compensated
wavelet coefficients and zero otherwise. These maps are gigiw |,,. Equation (5) then becomes
directional, i.e. they are the same for all directional sris
at each scale of the 2D wavelet transform. In this way, we = 1 b 2
shall be able to compare(c) ando(d) even when the wavelet "' Z [ MG (1 T(d)) = Tel[;, + A (R(c) + R(d|c)
operatorsT and 7 differ in their directional division of the v=0 @)

frequency plgne. . o . . The MSE term in (7) depends on the wavelet vectoasd

In natural images, discontinuities in the disparity map aigjn very different ways: it is quadratic inbut not ind. There-
usually associated with discontinuities in the image. Wh&gye the minimization is solved using coordinate desc2aj,[
they are not, it is very difficult to estimate the disparityjrs; minimizing c and thend. The minimization ofc ignores
discontinuities from multiple views. Therefore, we canuee the dependency withl due to the shared significance map.
the data redundancy of the DIBR by coding the image aRg,is shall allow us to use classical wavelet coding techesigu
the disparity significance maps jointly. This is done by eodi ¢, - 404 dynamic programming fat.

o_nly_t_he Sig”iﬁc?’?ce map of the imaggc) and assumi_ng the The optimization is initialized at high bitrate where the KIS
significant coefficients ir(d) to be a subset of those in(c), g virtually null, that is

that is,

o= MG )~ [ Mesd) <R[ ©

N,—1

This joint encoding also reduces the complexity of the deartn general, we would need to iterate the successive opti-
for the 0ptima| vectord* by f|x|ng a |arge number of its Mization process until convergence. Here, however, onty on

coefficients to zero. iteration is run to reduce the computational complexity and
The total rateR(c, d) is then given by the sum of the rategorevent erroneous disparities from introducing blur in the
R(c), and R(d|o(c)) and the RD problem is encoded reference viely.
N In the remainder of this section, we first describe the
N R : 2 optimization of the reference view in Section IlI-B. We then
il — M (Te p
d N vz:;) [t = Mz (Te; ()], (4) detail the optimization of the disparity map, beginningfwit

the simpler case of one-dimensional views in Section IlI-C,
which we extend to two-dimensional views in Section IlI-E.
where R, is the maximum rate allowed. The constraint (3fFinally, we present how a quality scalable bitstream can be
appears implicitly in the rate constrain®(d|o(c)) takes the obtained in Section III-G.

value +oo when this constraint is violated. Introducing the

Lagrange multiplierA [20], (4) can be written as

such thatR(c) + R(d|o(c)) < Rmax

N1 B. Reference View

1
min — Z |lo — M{(Tc;T(d))Her/\ (R(c) + R(d|o(c))).  We start with the optimization of the wavelet coefficients
© v=0 c of the reference view. Fixing and using the high-bitrate

) assumption (8), the optimization problem (7) becomes
This equation has three goals. First, it encodes the referen P ®), P P )

view. Second, it estimates the disparity map, and therefore .
allows the rendering of arbitrary views. Finally, it encede e
this disparity map. Solving this optimization shall be thpit
of the next section.

llo =T[5 + AR(c). 9)
When the wavelet transforfl’ is nearly orthonormal, like
the 9/7 wavelet [30] for instance, this equation can be frth

simplified to
IIl. RATE-DISTORTION OPTIMIZATION P

1

TN T o — |, + AR(c), (10)

A. Overview min
c

Since (5) is non linear, solving it is not a trivial operation
Therefore, we formulate several approximations to obtainvéhich is a standard problem in image compression and is
computationally efficient method. readily solved by wavelet-based coders [24].
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Fig. 4. An error matrixE from the Tsukuba image set [19] with two optimal paths ovdrla = 0 (dashed) and\ = co (solid). Lighter shades of gray
indicate larger squared intensity differences.

C. One-Dimensional Disparity Map level j £ L — 1. The low-pass coefficientsat the finest level

. . _ _ . s e e ]
The next step is to find an optimal solution for the wavelet= 0 are equal to the disparities that is, 1) = 5.,.

coefficientsd of the disparity map. To begin with, we consider The probability of the wavelet coefficients is approximated
the special case of one-dimensional viewg,(= 1). as follows. The coefficient$ at the coarsest level and the

Fixing c, the optimization problem (7) becomes coefficientsh are assumed to be jointly independent. The
coefficients/ follow a uniform distribution. The coefficients
mln— Z Z (ijn v30n) — o n)Q + AR(d|o(c)) ! are null with probability one if the corresponding image
’ coefficients are insignificant and otherwise follow a disere
(11) and truncated Laplace distribution with zero mean [24]f tha
wherefly £ Tc and M}, (1,;d) denotes the intensity valuejs,
of the pixel inl, which would correspond to the pixel in

v=0 n=0

(7)
the reference view if the pixet had the disparity value. D 1-0) Lo —o if o0’ (c) =0,
Unlike in the previous section, the MSE term is not a quadratip(hn |0 (c)) = 1 therwi
function of the wavelet coefficients, due to the non-lingeof z¢ ° <N, ONErwise, 17)

motion compensation. Instead, we take advantage of the fact
whereb is a parameter to be estimated arids a normalizing

that the disparity map only takes a finite number of values.
gonstant. This probability distribution defines the enyrab

The MSE term can be written in terms of an error matri e
E in which the entryE,, gives the scaled square error that"e data [33], that we use as an approximation of the actual

the pixeln of T, would be associated with if it had dlsparltyb'trate The bitrate, in bits per pixel, is therefore
d (see Figure 4). That is, L—1Nn(j
hD |l
ol Z (Mo 00m) ~To) - (2) et Z nz o (P21 (00) + ot
v.n ’U7 0,n . (18)

wherelog2 denotes the logarithm to base @¢ is a constant
term independent o and Ny (5) is the number of high-pass
coefficients at levelj. We introduce the cost function

This error matrix is also called “disparity space image”][19
and is independent of the disparity map Computing this
matrix has a complexity o (N N,) whereN, is the number

of disparity values. +o00 if O,(J)( ) =0 and R) £0,
We study the encoding of the disparity map using two C(hY)) & (19)

transforms, namely the Sequential (S) transform [24] and

a transform we call the Lgplace (L), transform due to itﬁlhereu A/ (blog2) acts as a smoothness factor. Using this
resemblance to the Laplacian pyramid [31]. Both provide &st function, the equation of the bitrate (18) becomes
compact representation of discrete and piecewise-carditan

parity maps. Both also induce graphs of dependencies betwee
their wavelet coefficients as trees, so that the problem can R(d|o(c))
be efficiently solved using dynamic programming [32]. They

differ in their redundancy, the former being non redundar§nd the optimization problem (11) can be written as

They also differ in the complexity of their optimization Wit

regard to the number of disparity valudg, the latter being LG (J)

of linear complexity and the former of quadratic complexity mm Z El“” + Z Z C h (21)
The analysis and synthesis operators of these two transform "

are given in Table |, whergz | denotes the largest integer less i )

or equal toz. They relate the low-pass coefficieritand the D- Dynamic Programming

high-pass coefficientéd between the level — 1 with finer The optimization problem (21) is still a minimization over

resolution and the level with coarser resolution. a space with large dimension. However, it can be solved
The wavelet vectod is made of all the high-pass coeffi-recursively by a series of minimizations over small search

cientsh, along with the low-pass coefficient®f the coarsest spaces. The approach consists in using the commutativity

u|h5ij) | otherwise

N (5)
Z ) + cst (20)

>/|)—‘
HM\
)



L-transform S-transform
analysis synthesis analysis synthesis
l(J) _ lgi71)+lé{lllf S, (4)
n  — i—1 i—1 . 5 5
’ G- _40) | G- 1) — {’éjn )+léjn+l)J G0 2P - {%J +h)
) . . 2n T in 2n noo= 2
héjil) = 15‘771) - l(J) l(jfl) l(J) h(jfl) ( ) S1,(5) (4)
n n n — + . i i j—1) S1 4(J hyy
RG—D Z G- 6) bt T TRy | ) =19 gy npi = bi” = | 75—
2n-+1 2n-+1 (13) (15) (16)
TABLE |

ANALYSIS AND SYNTHESIS OPERATORS OF THE APLACE (L) AND SEQUENTIAL (S) TRANSFORMS(SEE TEXT FOR DETAILS.

ure 5, is given by

) m(l}n ) (El(1)+h(0),0 + El(1)+h(0),1
l( ) h( ) h( ) 0 0 0 1
o +hoshy (22)

+C(") + C (b))

By grouping the terms of the summation together and com-
muting the min and sum operators, it can be rewritten as
min (min (E + C’(hgo)))
l(l) h(U)
0 0
+ min (E 1,0 , + C(hgo))))
Fig. 5. Dependency graph of a three-level L transform. Theffiments in h(lt)) lo " +hy 1
bold are those included in the wavelet vectbr Gray nodes represent the

MSE and rate terms of the RD optimization. The dashed boxligigfis the which reduces the complexity from cubic to quadratic
two-level L transform associated with (22). . . LT
Next, we illustrate how to solve the inner minimizations.
Let us consider the minimization oveéo) with a smoothness

factor 4 = 0.5. We assume that the disparity values range
@ from 0 to 5 and solve for the casé)l) = 2. Let us assume

157 +h5 0
(23)

that the first column vector of the error matiik is

(0)
zOT\o12 3 45 (24)
E,[2 5 3 025 4 2

Stacking the values of the cost functidmhéo)) for eachhf)o)
(note thath” = 1\ —1§" = 1"’ — 2) into a cost vectoC
using (19) gives
ORONONRE
: cipnts | pOV-—2 -1 0 1 2 3 (25)
Fig. 6. Dependency graph of a three-level S transform. Tlefficients in 0

bold are those included in the wavelet vectbr Gray nodes represent the CcT | 1 05 0 05 1 15
MSE and rate terms of the RD optimization.

The sum of these two vectors is

K Jo 1 2 3 4 5
of the sum and min operators to group the terms of the E,+C' |3 55 3 075 5 35
summation together based on the variables they depend on. K
This is possible due to the choice of wavelets, which do n@he minimum is thereforé.75, which is reached atéo) —_3.
introduce loops in the dependency graph of the group of termgs, the definition of the synthesis operator (14), it followstt

as shown in Figures 5 and 6. In these figures, the not&#ign ihe optimal high-pass coefficient associated wglﬁ —9is
denotes the columm of the error matrixE. This column ,©) _ i

. . . . 0
vecto_r contam_s the errors of the different disparity valae In the general case, the recursive minimization is defined
the pixel locationn.

using a pyramid of error matricgE),j € [0,...,L — 1]}.
Example 1:Let us consider a simple example to illustratghe error matrix at the finest levgl= 0 is defined by

the algorithm. The optimization problem associated with a

two-level L transform, emphasized by a dashed box in Fig- E® 2 E (27)

(26)




The error matrices of the L transform at coarser levels are

given by
() (i—=1) 1) L i
J) J— 7
Ejn = min (B g 5, O )
+ x;nl (BY-Y +CmS ) (28) HL | HH H
nomh d+hSY 2nt 2n+1))

The error matrices of the S transform at coarser levels are
given by

G _ (-1 G-1) ©)
Fin = Iﬁ?f (Eso<d w20 T B @) 20 T ) @9)

whereSy(.) andS;(.) denote the synthesis operators defined
by (16).

Computing an error matriE() of the S transform has a
complexity quadratic in the number of disparity valuds:
error values need to be computed for each disparity vdlue \v
and each value of the high-pass coefficigfft. On the other " Y
hand, an error matri£) of the L transform can be computed
with only linear complexity, as was shown in [34] in the case
of Markov random fields with linear smoothness function.

The optimization problem (21) becomes simply

. L—1
i, El(@ U) (30)
for each low-pass coef‘ficiei‘&b_1 at the coarsest levdl — 1. (a) Four-band division (b) Three-band division

The pyramid of error matrices is associated with a pyramld . .
) 0 L 7. Tvyo divisions of the fregl_Jency plane and the assediaraphs of
of matrices of h'gh pass coefﬁuen{ﬂ J € [ R _dependenmes between the coefficients of the S transform.
1]}. At each level, they store the high-pass coefficients which
achieve the minima in (28) or (29). Once the optimal low-
pass coefficientséff’l)* are known, the low-pass and high-using independent coefficients, while wavelets spread #te d
pass coefficients at other levels are obtained by backirgckover the entire tree using differential coefficients. Tlhere,

using the matricefHI) and the synthesis operators (16) owavelets offer resolution scalability while quadtrees du. n

(14). Another difference lies in the induced smoothness. Queastre
Therefore, the overall algorithm to solve (21) is the followenforce constant values inside blocks but no smoothness
ing: between blocks, while wavelets induce a smoothness between
1) theinitialization creates the error matrig(®), all pixels. Our experimental results shall show that théetat
2) the bottom-up passcomputes the matrice) and reduces spurious noise in the estimated disparity maps.
H),

3) the coarsest- Ievel m|n|m|zat|ohnds the optimal low- E. Two-Dimensional Disparity Map

pass coefficientd,” ™

4) the top-down passbacktracks to compute the optimal

low-pass and high-pass coefficiedtd* and»* at all
levels.

At the end, both the globally optimal disparity may
and the globally optimal wavelet vectdr are known. The © 4 Ny . N 2
initialization has a complexity ab (N N, ), the bottom-up pass Eimn = Z (Mv,m,n(|v§ d) — |o,m,n) : (31)
of O(N,,N2) in the case of the S transform at{V,, Ny) in v=0
the case of the L transform, the coarsest-level minimipatid Its computation has a complexity 6f( N N,), which remains
O(N,N4) and the top-down pass 6¥(N,,). linear in all the variables.

This algorithm shares similarities with quadtree-based mo The two-dimensional extension of the L transform is also
tion estimation [23]. In quadtree estimation, small mirdexi straightforward. Its synthesis operator (14) simply beesm
tions are solved at each node of the tree to find optimal motion
vectors and decide whether to split or merge. In the proposed

We now extend the optimization procedure to two-
dimensional views. The error matrE(O) becomes an error

nsorE( ) ,, With three dimensions: rows:, columnsrn and
dlsparltlesd It is defined as

o = U + h 2,

algorithm, small minimizations are also solved at each node S =19, #0510, .
but they find optimal wavelet coefficients instead. A major 1G=1) _ ) 4 pG-D (32)
difference between quadtrees and wavelets lies in the way th 2m+1,2n4+1 7 mn * 2m+1,2n+1

data is stored in the tree. Quaditrees store the data ateagis S e =19, + S



The computational complexity at each node of the depender@gde Modulation (DPCM) between quality layers. The opti-
tree remain®)(N,), with a total complexity ofO(N,,,N,,N;) mization problem then becomes
for the bottom-up pass. N, No—1

The two-dimensional extension of the S transform is slightl min Z 1 Z HMZ(M T(d(q))) _ Tf)q)
more complex. We follow the classical approach of apply- {d@} 2=~ N =
ing the one-dimensional wavelet transform twice at each
scale [30], once horizontally and once vertically. Howeves + ADRd@ — d(q‘1)|c(Q),d(q‘1))>
depart from the usual four-band division of the frequenanpl
(high-high, high-low, low-high, low-low) shown in Figurda). . ) @) - )
If we followed this division, the minimizations at each nod&hereN, is the number of quality layer$;™ is the quantized
of the dependency tree (29) would depend on four variablégference view from thelt_h quality layer andA‘” is the
”7(1{'?”, hlfﬂ{?n, lh%?n andhh'?), . Therefore, the complexity of associated Lagrange mul_t|pI|er. _The vectt?) is chosen to
each minimization would grow fror®(N2) to O(N4), which € the null vector. The differential vectods?) — d(qil) are
is only feasible when few disparity values are allowed. assumed to be Jomtly m_dependent and to_foIIow a discretk an
Syncated Laplace distribution parameterizedblsy.
e optimization problem is solved sequentially for each
The minimization for the;*" quality layer is given by

2

2
(35)

Instead we propose to divide the frequency plane into orl
three bands at each scale, as shown in Figure 7(b). The fir&-{h
transform is applied vertically, leading to two bands (Iovxﬁ .

high). The second transform is applied horizontally, bultyon Ny—1

. . f .1 b (9) (q) 2
onto the previous low band. This way the complexity at each min — Z HMU(IU;T(d D)) =1 H 36
node of the dependency tree remaifi$N?), with a total di v=0 2 (36)
complexity of O(N,,, N,, N2) for the bottom-up pass. + ADR(d@ — dla=D|c(@ gla—1))

which is similar to the minimizations described in the poas
F. Bitrate Optimization sections and can be solved in the same way.
The parameteb of the Laplace distribution is estimated

using bracketing and a search akin to bisection [13, 28]. IV. EXPERIMENTAL RESULTS

A large bracket is initially chosen, whose size is iterdfive \we present experimental results on two image sets, Tsukuba
reduced. At thg'” iteration, the optimal coefficientd, 2} are  and Teddy [19], displayed in Figure 8. In both cases, the
found and the actual parameté? is estimated by minimizing images are rectified. Note that the proposed RD optimization
the Kullback-Leibler divergence [33] between the histogia  framework is the same whether images are rectified or not. The
the coefficientd 2} and the Laplace distribution (Equation 17)Tsukuba set has a fairly limited range of disparities, witiyo
The current Lagrange multipliek) is obtained using the 16 disparity numbers, i.e., pixel shifts due to view changes
equation _ o are up to 16. On the other hand, the Teddy set has a much
AD = 1 Op) 10 2 (33) larger range, with 60 disparity numbers. As a consequence,
the Teddy set contains much larger areas of occlusions and
disocclusions.
(i+1) — /\_ o 34) Experiments have been run in the grayscale domain with
(@) intensity values in the range, 1]. A border of two pixels has

where \ is the target RD slope used to encode the referen@en removed around the images of Tsukuba to compensate
view. This update equation has the advantage of being indat camera artifacts. The experiments have been conducted

pendent of the bracket size, derivative-free, and exachwhe Using nine views with the central view as reference for the
is a linear function ofu. The iterations end when the relativel Sukuba set, and two views with the left view as reference

error |]A — A(V|/X becomes small enough. for the Teddy set. In the following, the bitrate is defined in

The final bitstream of the disparity map is generated HyjtS per reference-view pixels, which does not depend on the
fixed-length coding of the low-pass coefficientsdn fixed- total number of views in the optimization.
length coding of the sign of the high-pass coefficients and!n order to benchmark the performances of the proposed

arithmetic coding [33] of their absolute values. Only thgthi RD-optimized wavelet codecs, they are compared against two
pass coefficients for which(c) is one are encoded. other classical codecs, one based on block matching [6, 10]

and the other on quadtrees [23, 35]. These two codecs usually
) N handle 2D motion vectors instead of 1D disparities. To obdali
G. Quality Scalability fair comparison, they are adapted to perform one-dimeasion
The wavelet-based encoding of the reference views @alptimizations. The encoding is performed in closed loop to
lows both resolution and quality scalabilities [24]. As e obtain the least possible distortion at the decoder. Thekblo
proposed wavelet-based encoding of the disparity map omlgised encoder simply minimizes the MSESof 8 blocks and
allows resolution scalability. Quality scalability is aeted by generates the bitstream using fixed-length codes. The ieadt
introducing quality layers [24]. based encoder performs a full RD-optimization with vamsabl
The ¢ quality layer is associated with a vector of wavelesize blocks, as detailed in [23]. The amount of disparity
coefficientsd(@), which is encoded using Differential Pulseregularization introduced therefore depends on the bitrat

and the parameter is updated by

1



(a) Level O (b) Level 2

(c) Level 4 (d) Level 6

Fig. 9. Disparity map of the Teddy set at four resolution levehowing the
resolution scalability of the wavelet-based represemtati

hinders the synthesis of novel viewpoints.

The quadtree-based encoder proves to be much more re-
liable. Using the RD-optimization, it is able to gracefully
decrease the quality of the disparity map when the bitrate is
Fig. 8. The two sets of images used in the experiments (fra8i).[1 reduced. Not only do the disparity maps become coarser, but

they also tend to have less spurious noise because suchea nois
has a high bitrate cost.

All codecs rely on the QccPack implementation of The wavelet-based encoders, using both the S transform and
SPIHT [36] to encode the reference view. Therefore, ththe L transform, demonstrate a similar behavior. Compared
wavelets, quadtrees and blocks are all optimized using ttiethe quadtree-based encoder, they tend to generateitispar
same error tensorE. The codecs based on quadtrees andaps with less spurious noise. In quadtrees, the rate eamtstr
wavelets allocate automatically the bitrate of disparitgps. favors larger blocks. However, the disparity values betwee
Therefore, the codecs are compared at RD points with eqb#cks are independent. In wavelets, on the other hand, the
RD slopes, but possibly different total bitrates. rate constraint favors small wavelet coefficients, whicrates

Figure 9 illustrates the resolution scalability of the pvepd dependencies between blocks and enforces an inter-block
wavelet-based representations. Unlike quadtrees whimte stsmoothness. The superiority of wavelets over quadtrees is
the disparity information only at their leaves, waveletsrst especially noticeable in the case of larger disparity range
this information over the entire tree, which allows partiaivhich makes them more effective at estimating and encoding
decoding of the tree at multiple resolutions. In the experita, the complex geometry of realistic 3D scenes.
the wavelet decomposition is performed completely, that is All of these encoders have issues in areas of occlusions and
until the low-pass band is reduced to a unique pixel. Expatisocclusions, as can be seen for instance around the chimne
iments have shown that stopping the decomposition earlief,the Teddy set. This creates large disparity errors whieh a
as is usually done in image coding, does not allow enoudhtrimental for novel-view synthesis. This issue is condidn
information aggregation in large textureless regions aadl$ by Figure 12. It shows two views synthesized from the DIBR
to erroneous disparity estimations. encoded at the RD slopgex 1073, along with the differences

Figures 10 and 11 show the DIBR encoded at three Riztween the synthesized and actual views. The dominarg nois
slopes)\, approximatelyl x 1072, 2 x 1072 and4 x 10~%, is due to occlusions and disocclusions. It has two sources.
which correspond to reference views encoded at bitrates Fifst, in these areas there are no correspondences between
0.1bpp, 0.5bpp and1.0bpp. images, which leads to erroneous disparity estimations: Se

The block-based encoder appears extremely sensitiveottd, the hole-filling process is efficient when disocclusiane
the lack of image texture. At low bitrates, the disparity mapmall but has difficulties handling large occlusions like time
becomes extremely noisy and is a poor estimation of tle@ the right of the Teddy set.
ground truth. The noise is much reduced at higher bitratgs, b We confirm this qualitative analysis by a quantitative one.
remains significant in some areas like the upper-right qorneigure 13 shows the RD performances of all the codecs. The
of Tsukuba or the roof of the house in Teddy. This serioushlock-based codec is the least efficient. Without some kind

(b) Teddy image set
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(b) Disparity map (S transform)

(c) Disparity map (L transform)

(d) Disparity map (quadtree)

(d) Disparity map qadtree o

T
| o

(e) Disparity map (blocks) (e) Disparity map (blocks)

Fig. 10. The DIBR of the Teddy set at three RD slopes corredipgnto  Fig. 11. The DIBR of the Tsukuba set at three RD slopes cooredipg to
reference-view bitrates of 0.1bpp, 0.5bpp and 1.0bpp (fiefirto right). The reference-view bitrates of 0.1bpp, 0.5bpp and 1.0bpp (fieftrto right). The
S and L transforms generate disparity maps which degradsefuly with S and L transforms generate disparity maps which degradeefoitly with
the bitrate and contain less spurious noise than quadtreb®aks. the bitrate and contain less spurious noise than quadtreb®paks.

of regularization this method is not suitable for novel viewetween the rﬁfere”nce view and the dlbslparlty map. I:;t thfese
synthesis, which underlines the interest of jointly estint experiments, the allocation remains stable across mosteof t

and encoding the disparity map. In Tsukuba, where the d[ghge of bitrates, with between 13% and 23% of the total
parity range is small, quadtrees outperform the L transfo trate dedicated to the disparity map. This is consistatit w

by up to 0.09dB and the S transform by up to 0.12dB e heuristic ratio of 10% proposed in [9]. The allocation
the other h.and in Teddy, where the disparity rané;e is hu&similar whether the baseline is small, like in Tsukuba, or
larger, the wavelets outperform quadtrees by up to 0.84dg2sonably large, like in Teddy.

for the L transform and up to 0.70dB for the S transform at

high bitrate. Both the L and the S transform offer similar RD V. CONCLUSION
performances. The'advantage of'the L' transfor'm i; primarily g paper has proposed a novel wavelet-domain DIBR
the lower computational complexity of its optimization.  ¢qgec able to approximate static plenoptic functions Igcal

Figure 14 compares the quality-scalable versions of th#e wavelet coefficients for both the images and the disparit
wavelets to their non-scalable counterpart. In Tsukubalityu maps have been estimated and encoded jointly to provide an
scalability has a PSNR cost of at most 0.29dB at high bitraigptimized bitrate allocation and reduce the ambiguity & th
both for the S and L transform. In Teddy, the PSNR cost {isparity estimation. In spite of the non-linearity of thptie
lower for the L transform, with at most 0.34dB at high bitratemization problem, a globally-optimal encoding of the distya
than for the S transform, with at most 0.47dB at high bitrateaaps has been found using dynamic programming along the

Finally, Figure 15 reports the optimized bitrate allocatiotree of integer wavelet coefficients. In addition to the haton



(a) Tsukuba

(b) Teddy
Fig. 12. Views synthesized from the DIBR with a referencew&ncoded

at 0.5bpp (left) and differences with the original viewsght). At low
quantization noise, the errors are mostly due to occlusions
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Fig. 13. Rate-distortion performances of the encoderschasevavelets (S
and L transforms), quadtrees and blocks. Wavelets are isupterquadtrees
and blocks in the case of larger disparity ranges.
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Fig. 15. Fraction of the bitrate allocated to the disparitaps Except at
very low bitrates, the rate ratios are stable with values/eet 13% and 23%.

scalability intrinsic to wavelets, quality scalability $1doeen
introduced using quality layers. Finally, experimentaduiés

on real data have confirmed the performances of the proposed
codec. Future work shall aim at extending the optimization
of the disparity map to more general integer wavelets, at
mitigating the issues due to occlusions and at compressing
dynamic plenoptic functions.
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