
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Directional Multiscale Modeling of Images
using the Contourlet Transform
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Abstract— The contourlet transform is a new two-dimensional
extension of the wavelet transform using multiscale and direc-
tional �lter banks. The contourlet expansion is composed of
basis images oriented at various directions in multiple scales,
with �exible aspect ratios. Given this rich set of basis images,
the contourlet transform effectively captures smooth contours
that are the dominant feature in natural images. We begin with
a detailed study on the statistics of the contourlet coef�cients
of natural images: using histograms to estimate the marginal
and joint distributions, and mutual information to measure the
dependencies between coef�cients. This study reveals the highly
non-Gaussian marginal statistics and strong inter-location, inter-
scale, and inter-direction dependencies of contourlet coef�cients.
We also �nd that conditioned on the magnitudes of their
generalized neighborhood coef�cients, contourlet coef�cients can
be approximately modeled as Gaussian random variables. Based
on these �ndings, we model contourlet coef�cients using a
hidden Markov tree (HMT) model with Gaussian mixtures that
can capture all inter-scale, inter-direction, and inter-location
dependencies. We present experimental results using this model in
image denoising and texture retrieval applications. In denoising,
the contourlet HMT outperforms other wavelet methods in terms
of visual quality, especially around edges. In texture retrieval,
it shows improvements in performance for various oriented
textures.

Index Terms— wavelets, contourlets, multiscale, multidirection,
image modeling, statistical models, multiscale geometricanalysis.

I. I NTRODUCTION

Image processing typically relies on simple statistical mod-
els to characterize images. Natural images tend to have certain
common characteristics that make them look “natural.” The
aim of statistical modeling is to capture these de�ning charac-
teristics in a small number of parameters so that they can be
used as prior information in image processing tasks such as
compression, denoising, feature extraction, and inverse prob-
lems. A simple, accurate and tractable model is an essential
element in any successful image processing algorithm.

Images have effectively been modeled using the wavelet
transform [1], [2], which offers a multiscale and time-
frequency-localized image representation. Initially, the wavelet
transform was considered to be a good decorrelator for images,
and thus wavelet coef�cients were assumed to be independent
and were simply modeled using marginal statistics [3]. Later,
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it was realized that wavelet coef�cients of natural images
exhibit strong dependencies both across scales and between
neighboring coef�cients within a subband, especially around
image edges. This gave rise to several successful joint statis-
tical models in the wavelet domain [4], [5], [6], [7], [8], [9],
as well as improved image compression schemes [10], [11],
[12].

The major drawback for wavelets in two-dimensions is
their limited ability in capturing directional information. To
overcome this de�ciency, researchers have recently considered
multiscale and directional representations that can capture the
intrinsic geometrical structures such as smooth contours in
natural images. Some examples include the steerable pyramid
[13], brushlets [14], complex wavelets [15], and the curvelet
transform [16]. In particular, the curvelet transform, pioneered
by Cand�es and Donoho, was shown to be optimal in a certain
sense for functions in the continuous domain with curved
singularities.

Inspired by curvelets, Do and Vetterli [17], [18] developed
thecontourlettransform based on an ef�cient two-dimensional
multiscale and directional �lter bank that can deal effectively
with images having smooth contours. Contourlets not only
possess the main features of wavelets (namely, multiscale and
time-frequency localization), but also offer a high degreeof
directionality and anisotropy. The main difference between
contourlets and other multiscale directional systems is that
the contourlet transform allows for different and �exible
number of directions at each scale, while achieving nearly
critical sampling. In addition, the contourlet transform uses
iterated �lter banks, which makes it computationally ef�cient;
speci�cally, it requiresO(N ) operations for anN -pixel image.

In this work, we focus on image modeling in the contourlet
domain. Our primary goal is to provide an extensive study
on the statistics of contourlet coef�cients in order to gain
a thorough understanding of their properties. We then de-
velop an appropriate model that can capture these properties,
which can be useful in future contourlet applications including
compression, denoising, and feature extraction. Similar to
wavelet-based models, contourlet-based models need to take
into account dependencies acrossscalesand space(or loca-
tions). However, as a “true” two-dimensional representation,
contourlets additionally allow us to model the dependency
acrossdirections. In other words, contourlet modeling allows
us to jointly model all three fundamental parameters of visual
information, namelyscale, space, anddirection.

The rest of the paper is organized as follows. Section II
introduces the basics of contourlets including their transform
algorithm, structure, properties, and coef�cient relationships.
In Section III, we study the marginal and joint statistics of
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contourlet coef�cients of natural images using histograms.
Section IV examines the dependencies between coef�cients
using mutual information. Inspired by these results, we de-
velop a hidden Markov tree (HMT) model for the contourlet
transform in Section V. In Section VI, we apply the contourlet
HMT model in image denoising and texture retrieval. Finally,
a conclusion is presented in Section VII.

II. BACKGROUND

A. Contourlets

The primary goal of the contourlet construction [17], [18]
was to obtain a sparse expansion for typical images that
are piecewise smooth away fromsmooth contours. Two-
dimensional wavelets, with tensor-product basis functions as
shown in Figure 1(a), lack directionality and are only good at
catchingpoint discontinuities, but do not capture thegeomet-
rical smoothnessof the contours.

Contourlets were developed as an improvement over
wavelets in terms of this inef�ciency. The resulting transform
has the multiscale and time-frequency-localization properties
of wavelets, but also offers a high degree of directionalityand
anisotropy. Speci�cally, contourlet transform involves basis
functions that are oriented at any power of two's number
of directions with �exible aspect ratios, with some examples
shown in Figure 1(b). With such a rich set of basis functions,
contourlets can represent a smooth contour with fewer coef�-
cients compared with wavelets, as illustrated in Figure 1(c).
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Fig. 1. Contourlet and wavelet representations for images.(a) Examples of
�ve 2-D wavelet basis images. (b) Examples of four contourlet basis images.
(c) Illustration showing how wavelets having square supports that can only
capture point discontinuities, whereas contourlets having elongated supports
that can capture linear segments of contours, and thus can effectively represent
a smooth contour with fewer coef�cients.

The contourlet transform is implemented via a two-
dimensional �lter bank that decomposes an image into several
directional subbands at multiple scales. This is accomplished
by combining the Laplacian pyramid [19] with a directional

�lter bank [20] at each scale. Due to this cascade structure,
multiscale and directional decomposition stages in the con-
tourlet transform are independent of each other. One can de-
compose each scale into any arbitrary power of two's number
of directions, and different scales can be decomposed into
different numbers of directions. This feature makes contourlets
a unique transform that can achieve a high level of �exibility
in decomposition while being close to critically sampled
(up to 33% overcomplete, which comes from the Laplacian
pyramid). Other multiscale directional transforms have either
a �xed number of directions, or are signi�cantly overcomplete
(depending on the number of directions). Figure 2 shows an
example frequency partition of the contourlet transform where
the four scales are divided into four, four, eight, and eight
directional subbands from coarse to �ne scales, respectively.
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Fig. 2. An example frequency partition by the contourlet transform.

Figure 3 shows an example of the contourlet transform on
the “Peppers” image. For the visual clarity, only two-scale
decompositions are shown. The image is decomposed into a
lowpass subband and several bandpass directional subbands.
We notice that only contourlets that match withboth location
and direction of image contours produce signi�cant coef�-
cients. Thus, the contourlet transform effectively exploits the
fact image edges are localized in both location and direction.

Fig. 3. Contourlet transform of the “Peppers” image. The image is
decomposed into two pyramidal levels, which are then decomposed into four
and eight directional subbands. Small coef�cients are colored black while
large coef�cients are colored white.

B. Coef�cient Relationships

We de�ne some important contourlet coef�cient relation-
ships as depicted in Figure 4. For each contourlet coef�cient
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X , we de�ne its eight adjacent coef�cients in the same sub-
band as itsneighbors(NX ). Next, the coef�cient in the same
spatial location in the immediately coarser scale is de�nedas
its parent(P X ), and those in the same spatial location in the
immediately �ner scale are its children. Note that each child
has one parent and each parent has four children. We also
de�ne coef�cients at the same scale and spatial location but
in different directions as cousins (CX ). This inter-direction
relationship is more important for contourlets than for wavelets
as contourlets have more directions. From Figure 4, it can
be observed that there can be multiple cousins in certain
directions. This is because the basis functions corresponding to
the vertical and horizontal subbands are de�ned over different
sampling lattices [21].
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Fig. 4. Contourlet coef�cient relationships.

Combining the relationships across scales, space, and di-
rections, we refer to the collective set of all parent (PX),
neighbors (NX), and cousins (CX) of each coef�cientX
as itsgeneralized neighborhood. These relationships play an
important role in contourlet modeling, as will be seen in
subsequent sections.

C. Transform Setups

For the statistical studies in the next two sections, we
experiment with various natural images of size512 � 512.
These images vary from simple edge-dominant images such
as “Peppers” to highly textured images such as “Barbara.”
Unless stated otherwise, for the contourlet transform, we
use the 9-7 biorthogonal �lters (referred to as 9-7 �lters)
for the multiscale decomposition stage and the McClellan
transformed directional �lters from the 9-7 �lters proposed by
Cohen and Daubechies [22] (referred to as CD �lters) for the
multidirectional decomposition stage. We partition the �nest
and second �nest scales into eight directional subbands, and
the two next coarser scales into four directional subbands,and
obtain a frequency partition as shown in Figure 2.

We would like to point out that in contrast to wavelets,
where there exist many good wavelet �lters, the �lter design
problem for contourlets is still an ongoing work. Thus, the
results of the contourlet transform in this paper should be
viewed as an indication of its features and potential rather
as a comprehensive assessment.

III. C ONTOURLET STATISTICS

A. Marginal Statistics

We �rst study the marginal statistics of the contourlet coef�-
cients of natural images. Figure 5 plots the histograms of two
�nest subbands of the image “Peppers.” These distributions
exhibit a sharp peak at zero amplitude and heavy tails to both
sides of the peak. This implies that the contourlet transform
is sparse, as the majority of coef�cients are close to zero. The
kurtosis of the two shown distributions are24:50 and 19:40,
which are much higher than the kurtosis of3 for Gaussian
distributions. Similar distributions are also observed atall
subbands of other test images. Thus, the subband marginal
distributions of natural images in the contourlet domain are
highly non-Gaussian.
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Fig. 5. Marginal statistics of two �nest subbands of the image “Peppers.”
The kurtosis of the two distributions are measured at (a) 24.50 and (b) 19.40,
showing that the coef�cients are highly non-Gaussian.

B. Joint Statistics

Marginal statistics only describe individual behaviors of
transform coef�cients without accounting for their dependen-
cies. It is clear that contourlet coef�cients depend on each
other since only contourlet functions that overlap and direc-
tionally align with image edges lead to signi�cant coef�cients.
Figure 6 shows the conditional distributions of contourletcoef-
�cients, conditioned on their parents (P X ), neighbors (NX ),
and cousins (CX ), using the “Peppers” image. First, we notice
that all of these conditional distributions exhibit a “bow-tie”
shape where the variance of the coef�cients is related to the
magnitude of the conditioned coef�cient. Second, even though
coef�cients are correlated due to the slight overcompleteness
of the contourlet transform, they areapproximatelydecorre-
lated since conditional expectationsE[X j �] � 0. Again,
similar behaviors are observed at all subbands of other test
images. Therefore, we conclude that contourlet coef�cients of
natural images are approximatelyuncorrelatedyet dependent
on each other.

These dependencies, however, arelocal. Figure 7 shows the
conditional distributions of contourlet coef�cients conditioned
on distantrelatives and neighbors of the “Peppers” image. We
observe that these conditional distributions are approximately
invariant to the conditioned value, indicating independence.

Finally, we examine the conditional distributionsP(X j
P X = px), P(X j NX = nx) andP(X j CX = cx), where
px, nx, and cx are some �xed values, as shown in Figure
8. The kurtoses of the shown conditional distributions are
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Fig. 6. Conditional distribution of a �nest subband of “Peppers,” conditioned on (a) parentP (X j P X ), (b) neighborP (X j NX ), (c) cousinP (X j CX ).
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Fig. 7. Distribution of a �nest subband of “Peppers” conditioned on (a) ancestors, (b) neighbors, and (c) cousins,all at distances of three coef�cients away.

3:90, 2:90, and2:99, conditioned on the coef�cients' parents,
neighbors, and cousins, respectively. In contrast to the high
kurtoses (around 20) of the marginal distributions in Figure 5,
these conditional kurtoses are very close to the kurtosis of3
for Gaussian distributions. Thus, we conclude that contourlet
coef�cients arenon-Gaussian but conditionally Gaussian. In
other words, the contourlet coef�cients of natural images can
be accurately modeled by mixtures of Gaussian distributions
whose variances depend on their generalized neighborhood co-
ef�cients. We will explore this fact for developing contourlet-
based models in Section V.

IV. D EPENDENCECHARACTERIZATION VIA

INFORMATION-THEORETICANALYSIS

In this section, we quantitatively study the joint statistics of
contourlet coef�cients in complement to the qualitative study
in the previous section, using mutual information as a measure
of dependencies [23]. Our goal is to compare the dependencies
across scales, space, and directions in the contourlet domain.

A. Mutual Information and Estimation

Mutual information between two random variablesX and
Y with joint densityp(x; y) and marginal densitiesp(x) and
p(y) is de�ned as [24]

I (X ; Y) =
Z Z

p(x; y) log
p(x; y)

p(x)p(y)
dxdy: (1)

Mutual information can be interpreted as how much infor-
mation one random variable contains about the other. Its
value increases with increasing dependence between the two
variables.

We resort to nonparametric histogram estimation of mutual
information [25], [26] between contourlet coef�cients and

their generalized neighborhoods. Speci�cally, for a pair of
contourlet coef�cientsX and Y (such as coef�cients in a
subband and their parents), we use the following estimator
[25]

Î (X ; Y ) =
X

i;j

kij

N
log

kij N
ki kj

�
(J � 1)(K � 1)

2N
; (2)

where kij is the number of coef�cient pairs in the joint
histogram cell(i; j ), ki =

P
j kij and kj =

P
i kij are

the marginal distribution histogram estimates,N is the total
number of considered coef�cient pairs, andJ and K are
the number of histogram bins alongX and Y directions
respectively. The �rst term in (2) is the mutual information
histogram estimate, while the second term is a partial bias
correction term. It can be shown that even after the bias is
partially removed, the residual bias still causes the estimator
to underestimate the mutual information and the estimate can
only serve as a lower bound [25].

One way to tighten the estimation bound is by choosingJ
andK to give the maximum estimate in (2). Empirically, we
found that using

J = K = round(N=3000) + 12; (3)

where round(�) denotes rounding to the nearest integer, yields
good mutual information estimates for general natural images.

For mutual information involving a large set of variables,
the estimator in (2) becomes inaccurate. For example, con-
sider estimating the mutual informationI (X ; Y1; Y2; : : : ; YM )
between contourlet coef�cients at a particular subband (de-
noted byX ) and a subset of their generalized neighborhoods
(denoted byf Yi g

M
i =1 ). As the subset sizeM increases, mutual

information estimation accuracy decreases exponentially[26].
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Fig. 8. Conditional distribution of the coef�cients of a �nest subband of “Peppers” on (a) their parentsP (X j P X = px), (b) neighborsP (X j NX = nx ),
and (c) cousinsP (X j CX = cx). The kurtosis of the distributions are measured at3:90, 2:90, and2:99, respectively.

In such cases, we follow the approach in [23] that replaces the
high dimensional variablef Yi g

M
i =1 by its suf�cient statistic

T =
MX

i =1

ai jYi j; (4)

where ai are constant weights. ThenI (X ; T) involves only
two variables and can be accurately estimated as in (2). From
the data processing inequality [24], we have

I (X ; T) � I (X ; Y1; Y2; : : : ; YM ): (5)

We obtain the tightest lower bound ofI (X ; Y1; Y2; : : : ; YM )
in (5) by choosingai to maximizeI (X ; T), using standard
optimization algorithms in MATLAB.

B. Estimation Results

We present the mutual information estimation results for
three representative images “Lena,” “Barbara,” and “Peppers”
in Table I, noting that other images give similar results.
All images show signi�cant mutual information across all of
scales, space, and directions, which reinforces our observations
in Section III that coef�cients are dependent on their gener-
alized neighborhoods. At �ne scales, we empirically �nd that
I (X ; NX ) is higher thanI (X ; CX ), which is higher than
I (X ; P X ). Therefore, the eight neighbor coef�cients contain
the most information about the coef�cients. This is especially
true for highly textured images like “Barbara,” since for such
images large coef�cients correspond to highly textured areas
which span relatively large image areas with similar directional
patterns.

TABLE I

MUTUAL INFORMATION ESTIMATES BETWEEN A CONTOURLET

COEFFICIENTX AND ITS PARENTP X , ITS SPATIAL NEIGHBORSNX , AND

ITS DIRECTIONAL COUSINSCX .

Lena Barbara Peppers
I (X ; P X ) 0.11 0.14 0.10
I (X ; NX ) 0.23 0.58 0.17
I (X ; CX ) 0.19 0.39 0.14

I (X ; P X; NX ) 0.24 0.58 0.17
I (X ; NX; CX ) 0.26 0.59 0.20
I (X ; P X; CX ) 0.21 0.40 0.16

I (X ; P X; NX; CX ) 0.26 0.59 0.20

The mutual information estimates in Table I depend on the
choice of �lters and number of directions. Table II shows

the mutual information estimates for the “Lena” image using
different combinations of pyramidal (P) �lters: the Haar and
9-7 �lters, and directional (D) �lters: the CD �lters [22] and
the ladder �lters by Phoong et al. (referred to as PKVA �lters)
[27]. We �nd that replacing the Haar �lters by the 9-7 �lters
for the multiscale decomposition stage signi�cantly reduces all
inter-scale, inter-location, and inter-direction mutualinforma-
tion of the contourlet coef�cients. This suggests that the 9-7
�lters are superior to the Haar �lters in terms of whitening
the contourlet coef�cients. Similarly, replacing the CD �lters
by the PKVA �lters for the directional decomposition stage
reduces the inter-direction mutual information. This indicates
the PKVA �lters are more effective in localizing edge direction
and should lead to better performance in applications. Again,
we note that designing more effective directional �lters for
the contourlet transform is still an ongoing work, where better
contourlet �lters are expected to be found.

As a comparison, Table II also displays the mutual infor-
mation estimates of wavelet coef�cients for the image “Lena,”
using different wavelet �lters. Compared with wavelet coef�-
cients, contourlet coef�cients exhibit similar inter-scale and
inter-location dependencies but much higher inter-direction
dependencies.

TABLE II

MUTUAL INFORMATION ESTIMATES FOR CONTOURLET AND WAVELET

REPRESENTATIONS OF THE“L ENA” IMAGE USING DIFFERENT FILTERS.

Contourlets
P-�lter; D-�lter I (X ; P X ) I (X ; NX ) I (X ; CX )

Haar; CD 0.18 0.33 0.32
9-7; CD 0.11 0.23 0.19

9-7; PKVA 0.11 0.24 0.15
Wavelets

Filter I (X ; P X ) I (X ; NX ) I (X ; CX )
Haar 0.20 0.27 0.14

Daubechies 4-taps 0.14 0.23 0.08
Daubechies 8-taps 0.11 0.20 0.05

Table III compares the inter-direction and inter-locationmu-
tual information for different directional partitioning schemes
to partition the �nest scale into 4, 8, and 16 directions.
Each further directional partition increases the inter-direction
dependency while decreasing the inter-location dependency.

C. Single Coef�cient Estimates

Despite the observation that neighboring coef�cients carry
the strongest dependency, incorporating neighbors into statisti-



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

TABLE III

MUTUAL INFORMATION ESTIMATES FOR DIFFERENT DIRECTIONAL

PARTITIONS OF THE FINEST SCALE. DATA ARE OBTAINED USING 9-7

PYRAMIDAL FILTERS AND CD DIRECTIONAL FILTERS ON THE“L ENA”

IMAGE .

4 directions 8 directions 16 directions
I (X ; NX ) 0.26 0.23 0.20
I (X ; CX ) 0.14 0.19 0.19

cal models is not simple. Indeed, as every coef�cient has eight
neighbors, using a contextual model would result in a complex
dependence network which is undesirable. To simplify the
model, we want every coef�cient to be modeled to depend on
only a single coef�cient. Thus in the next step, we measure
and compare the mutual information between the coef�cients
and each of their neighbors and cousins individually rather
than as a collective set.

Table IV presents estimation results of mutual information
with singleneighbor and cousin. To keep the results manage-
able, we reduce the data size by grouping the measurements
and summarizing each group into an average.NX i refers to
i -th order neighbors wherei = 1 denotes the four adjacent
neighbors andi = 2 denotes the four diagonal neighbors.
CX j refers to thej -th order cousins, wherej = 1 denotes
the two immediate adjacent directions,j = 2 denotes the next
two directions, and so on.I (X ; NX i ) and I (X ; CX j ) are
the average of the mutual information contributed by each
of the four i -th order neighbors and each of the twoj -th
order cousins, respectively. For edge-dominant images like
“Lena” and “Peppers,” we empirically �nd thatI (X ; P X )
is higher thanI (X ; NX i ), which is higher thanI (X ; CX i ),
for all i . Thus, the parent coef�cient becomes the most sig-
ni�cant predictor when generalized neighborhood coef�cients
are considered individually. The exceptions are highly textured
images like “Barbara,” where single a neighbor coef�cient
remains the dominant predictor.

TABLE IV

AVERAGE MUTUAL INFORMATION ESTIMATES WITH A SINGLE PARENT,

NEIGHBOR, AND COUSIN.

Lena Barbara Peppers
I (X ; P X ) 0.11 0.14 0.08

I (X ; NX 1) 0.09 0.31 0.07
I (X ; NX 2) 0.07 0.27 0.05
I (X ; CX 1) 0.08 0.20 0.06
I (X ; CX 2) 0.06 0.17 0.05
I (X ; CX 3) 0.06 0.20 0.04

D. Summary

Based on the measured statistics in Sections III and IV,
contourlet coef�cients of natural images possess the following
properties:

P1 Contourlet coef�cients are marginally non-Gaussian
and dependent on their generalized neighborhood
coef�cients.

P2 Conditioned on the magnitudes of their generalized
neighborhood coef�cients, contourlet coef�cient are
zero-mean Gaussian distributed.

P3 The parent coef�cient is typically the most signi�-
cant predictor when generalized neighborhood coef-
�cients are considered individually.

V. I MAGE MODELING

We want to develop a statistical model that can incorpo-
rate the properties of contourlet coef�cients summarized in
Section IV-D while possessing other desirable characteristics.
Speci�cally, an ideal statistical model should: (i) accurately
model all properties P1–P3 of contourlet coef�cients, (ii)have
a simple structure to enable ef�cient training algorithms,and
(iii) be de�ned on a small number of parameters to allow
accurate training with limited data.

Properties P1 and P2 suggest that each contourlet coef�-
cient can be accurately modeled by a mixture of Gaussian
distributions where the condition for being in each Gaussian
distribution depends on the generalized neighborhood coef-
�cients. A good candidate for this is the hidden Markov
model (HMM) which has been used effectively for the wavelet
transform [7]. AnN -state HMM associates each coef�cient
with a hidden statevariable, randomly distributed over itsN
states. Conditioned on its state, each coef�cient is modeled
using a Gaussian distribution with parameters depending on
the state. Therefore, each coef�cient is characterized by an N -
dimensional state probabilities vectorp and anN -dimensional
standard deviation vector� (we assume contourlet coef�cients
have zero-mean since all contourlet basis functions have zero-
sum)

p = ( p1; p2; : : : ; pN )T ; and � = ( � 1; � 2; : : : ; � N )T ; (6)

where1; 2; : : : ; N denote the states.
The inter-coef�cient dependencies in HMMs are established

by links between thehidden statesof dependent coef�cients.
Associated with each link between coef�cientsm andn is an
N � N state transition probability matrixA m;n where its(k; l )
entry is the the probability that the coef�cientm is in statek
given the coef�cientn is in statel . To reduce the number of
parameters, like in the wavelet-domain HMM [7], we “tie” all
contourlet coef�cients in the same subband to share the same
set of model parameters.

The hidden Markov tree (HMT) model [7] is an HMM
that uses a quad-tree dependency structure. More precisely,
the HMT model establishes links between the hidden state
of each coef�cient and those of its four children. The quad-
tree structure of the HMT models directly model inter-scale
dependencies, while indirectly modeling other dependencies
between neighboring coef�cients via their links to a common
ancestor. The motivation for adapting the HMT model is
because of the property P3 which states the parent coef�cient
is the most signi�cant predictor when the generalized neigh-
borhood coef�cients are comparedindividually. Furthermore,
the HMT model has a simple tree structure, which enables
ef�cient training using the expectation maximization (EM)
algorithm. In particular, with only two states (N = 2 ), the
HMT model requires a relatively small number of parameters.
Two-states mixture models also possess an intuitive appeal
that their two states correspond to the two modes in natural
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images: edges and smooth areas. We empirically veri�ed that
the marginal distributions of the contourlet coef�cients in each
subband (e.g. see Figure 5) can be accurately modeled by a
mixture of two zero-mean Gaussian distributions.

Speci�cally, for a contourlet decomposition ofJ scales and
mj directional subbands within scalej (j = 1 ; 2; : : : J , from
coarse to �ne), a contourlet HMT model contains the following
parameters.

� p1;k (wherek = 1 ; : : : ; m1): for the root state probability
vector at each directional subband at the coarsest scale.

� A j;k (where j = 2 ; : : : ; J , and k = 1 ; : : : ; mj ): for
the state transition probability matrix to the directional
subbandk at scalej from its parent subband at scale
j � 1.

� � j;k (where j = 1 ; : : : ; J , and k = 1 ; : : : ; mj ): for the
Gaussian standard deviation vector of the subband at scale
j and directionk.

Compared with the wavelet HMT model, the contourlet
HMT model has a major advantage is that it accounts for inter-
direction dependencies while the wavelet HMT model does
not. Figure 9 illustrates this difference. In the wavelet HMT
model, the parent-children links are always in the same direc-
tion among three wavelet directions. As a result, the wavelet
HMT models coef�cients on each direction independently. In
contrast, contourlet coef�cients can have their four children in
two separate directional subbands. As a result, the dependence
tree in the contourlet HMT can span several adjacent directions
in the �ner scales, and thus inter-direction dependencies are
modeled in a similar way as inter-location dependencies (see
Figure 9(c)). In other words, the contourlet HMT model
effectively captures all dependencies across scales, space, and
directions.

Counting the number of free model parameters, where the
number of statesN = 2 , we count one free parameter
in each state probability vectorp1;k and two in each state
transaction probability matrixA j;k (the other parameters being
constrained to sum with these parameters to unity), and two
in each� j;k . Therefore, the contourlet HMT model requires
three parameters for each coarsest (root) subband and four
parameters for each �ner subband. For the subband partition-
ing scheme in Figure 2(b) with 4, 4, 8, and 8 directions from
coarse to �ne scales, the model has 92 free parameters in total.

It should be noted that there exist many other forms of
Gaussian mixture and tree models outside the HMM family
[9], [28], as well as variations of within the HMM family
[8], [29], [30]. For example, the models in [29] are based
on enlarged parameter sets that require more computation for
training. With the goals of keeping the parameter set small
and ensuring ef�cient algorithms, we choose the simple HMT
model with two states.

Table V shows the HMT parameters of the “Peppers”
image obtained via the EM training algorithm [7]. According
to the standard deviations� j;k , states 1 and 2 show two
clearly different modes of coef�cients being large and small,
which correspond to edge and smooth parts of the image,
respectively. The state transition matricesA j;k capture the
dependencies among coef�cients. In particular, they show a
high probability of a coef�cient being small (i.e., in state2)

given its parent is also small. However, state 2 (i.e., coef�cient
being large) exhibits less persistent across scales. The reason
for these is because small contourlet coef�cients correspond
to smooth image regions; if the parent is small, all of its
children are likely to be small. Whereas, a large contourlet
coef�cient is obtained only when the corresponding contourlet
basis function aligns with both location and direction of an
image edge. Thus, on a quad-tree of contourlet coef�cients,
from coarse to �ne scales the set of large coef�cients becomes
more localized to certain locations and directions.

VI. A PPLICATIONS

A. Denoising

We apply the contourlet HMT model developed in the
previous section to denoising of zero-mean additive white
Gaussian noise. In the contourlet domain, we can write

v = u + e; (7)

where u, v, and e are contourlet coef�cients of the clean,
noisy, and additive noise images, respectively. The problem is
to estimateu given v.

We �rst �t an HMT model to the noisy contourlet coef�-
cientsv to obtain a parameter set� v . From this, we obtain a
model for the clean contourlet coef�cients� u by subtracting
the noise variances from the variances in the model� v :

(� (u )
( j;k;n ) ;m )2 =

�
(� (v )

( j;k;n ) ;m )2 � (� (e)
( j;k;n ) )

2
�

+
; (8)

where the triple(j; k; n ) denotes then-th contourlet coef�cient
in the subband indexed by scalej and directionk; the index
m denotes the state; and(x)+ = x for x � 0 and (x)+ = 0
for x < 0. Note that because of the “tying” of contourlet
coef�cients in each subband,� (v )

j;k;n = � (v )
j;k for all n. The

noise variance(� (e)
j;k;n )2 can be estimated using a Monte-Carlo

method: by repeatedly generating random white noise images
and averaging their variance in the contourlet domain.

With the HMT model� u , the denoising problem can then
be formulated into a Bayesian estimation problem where we
want to estimate the quantityE [uj;k;n j vj;k;n ; � u ] for each
contourlet coef�cient(j; k; n ). Note that given its statesSj;k;n ,
the contourlet coef�cient is assumed to be Gaussian and the
problem is reduced to estimating zero-mean Gaussian signal
in zero-mean Gaussian noise. The solution to this problem is
well known [7]

E [uj;k;n j vj;k;n ; � u ; Sj;k;n = m]

=
(� (u )

( j;k;n ) ;m )2

(� (u )
( j;k;n ) ;m )2 + ( � (e)

j;k;n )2
vj;k;n : (9)

From this, using the state probabilityp(Sj;k;n = m j
vj;k;n ; � u ), which can be obtained from the EM algorithm
as a by-product during training, we obtain the �nal estimate
for the clean coef�cients

E [uj;k;n j vj;k;n ; � u ] =
X

m

p(Sj;k;n = m j vj;k;n ; � u )

�
(� (u )

( j;k;n ) ;m )2

(� (u )
( j;k;n ) ;m )2 + ( � (e)

j;k;n )2
vj;k;n : (10)
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Fig. 9. Parent-children relationship for (a) wavelets and (b) a possible contourlet decomposition. Black squares represent parent coef�cients with white
squares as their children. Notice in the contourlet case, a parent coef�cient can have its children spread over two subbands. (c) Dependency links between
subbands (represented by black circles) of the contourlet decomposition with 4, 4, 8, and 8 directions from coarse to �nescales.

k = 1 k = 2 k = 3 k = 4
state 1 state 2 state 1 state 2 state 1 state 2 state 1 state 2

p1;k 0.67 0.33 0.32 0.68 0.27 0.73 0.75 0.25

A 2;k state 1 0.87 0.02 0.83 0.04 0.74 0.05 0.72 0.03
state 2 0.13 0.98 0.17 0.96 0.26 0.95 0.28 0.97

A 3;2k � 1 state 1 0.14 0.04 0.32 0.02 0.41 0.02 0.69 0.02
state 2 0.86 0.96 0.68 0.98 0.59 0.98 0.31 0.98

A 3;2k state 1 0.22 0.08 0.29 0.02 0.52 0.01 0.65 0.02
state 2 0.78 0.92 0.71 0.98 0.48 0.99 0.35 0.98

A 4;2k � 1 state 1 0.82 0.00 0.35 0.00 0.55 0.01 0.38 0.00
state 2 0.18 1.00 0.65 1.00 0.45 0.99 0.62 1.00

A 4;2k state 1 0.36 0.00 0.44 0.00 0.40 0.01 0.41 0.00
state 2 0.64 1.00 0.56 1.00 0.60 0.99 0.59 1.00

� 1 ;k 160.10 60.16 258.30 84.76 165.04 59.00 168.01 76.82
� 2 ;k 59.88 12.29 98.37 18.79 70.06 21.79 70.83 27.18
� 3 ; 2 k � 1 7.71 7.68 76.11 11.62 20.62 7.90 39.47 6.90
� 3 ; 2 k 37.59 9.65 27.89 8.69 41.66 8.53 21.77 8.31
� 4 ; 2 k � 1 14.69 3.20 33.65 5.26 16.05 3.57 17.76 4.38
� 4 ; 2 k 16.47 3.43 31.46 5.20 17.91 3.66 17.57 4.34

TABLE V

CONTOURLET HMT PARAMETERS OF THE IMAGE“PEPPERS.”

We apply the above denoising algorithm to noisy versions
of several test images and the results are shown in Table
VI. Also in the table are the denoising results of the same
noisy images using the Wiener �lter (“wiener2”), the wavelet
thresholding method with thresholdT = 3 � , and the wavelet
HMT denoising method [7]. In terms of peak signal-to-noise
ratio (PSNR), the wavelet HMT and the contourlet HMT
methods produce comparable results. Both HMT methods
outperform “wiener2” and wavelet thresholding.

In terms of visual quality, the contourlet HMT produces
superior denoised results. Figure 10 shows the denoising
results of the “Zelda” image. It is clear that the contourlet
HMT removes most of the noise and produces the smoothest
image, even though it is not the best method in term of PSNR.

Recently, more complex wavelet-based denoising schemes
(e.g., [31], [32], [28]), have been developed. While some
have shown improvements over HMT algorithms, it is outside
the scope of this paper to provide detailed comparisons with
all denoising schemes. We only provide a comparison which
demonstrates that using HMT models, contourlets achieve
superior visual quality over wavelets.

TABLE VI

PEAK SIGNAL-TO-NOISE RATIO (IN DB) OF DENOISED IMAGES USING

DIFFERENT METHODS.

image noise noisy wiener2 wavelet wavelet contourlet
level � (5 � 5) thresh. HMT HMT

Lena 30 18.88 27.40 26.67 28.35 28.18
40 16.53 25.97 25.26 27.21 27.00
50 14.63 24.75 24.20 25.89 26.04

Barbara 30 18.72 24.95 23.76 25.11 25.27
40 16.38 23.59 22.66 24.94 24.79
50 14.48 22.57 21.96 23.71 23.74

Zelda 30 18.83 28.67 28.24 30.67 30.00
40 16.49 27.10 27.03 29.27 28.29
50 14.61 25.78 26.05 27.63 27.07

B. Texture Retrieval

The contourlet HMT model is also applied to content-based
texture retrieval. The problem is to �nd, given one query
texture image, the texture images that are “most similar” toit
within a large database of unlabeled texture images.

In the contourlet HMT texture retrieval system, each texture
image is �rst transformed into contourlet coef�cients. An
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Denoising results of “Zelda” image: (a) “Zelda” image, (b) noisy image (noise standard deviation =50, PSNR =14:61dB), (c) wiener2 (PSNR =
25:78dB), (d) wavelet thresholding (PSNR =26:05dB), (e) wavelet HMT (PSNR =27:63dB), and (f) contourlet HMT (PSNR =27:07dB).

HMT model is then �t to the contourlet coef�cients, and the
HMT model parameters are extracted as image features. The
Kullback-Liebler distances (KLD) between the query image
model and each database image model are measured and the
database images that give the smallest KLD are retrieved. The
KLD is de�ned as [24]

D(p(X j � q ) k p(X j � i )) =
Z

p(x j � q ) log
p(x j � q )
p(x j � i )

dx:

(11)
Retrieval based on KLD can be justi�ed as retrieval by the
maximum likelihood (ML) selection rule [33].

There is no closed form expression for the KLD between
HMT models. To estimate the KLD between two HMT mod-
els, one can resort to a Monte-Carlo method that randomly
generates multiple sets of data using the query model and then
computes their likelihoods against each candidate model. An
alternative method is to compute an upper bound of the KLD
based on the log-sum inequality [34].

In the retrieval experiments, a subset of the Brodatz image
database [35] was used. This subset contains 64 different
textures of size 512� 512 and is shown in Figure 11. Each
of these textures was partitioned into 16 sub-images of size
128� 128, and only 8 of the 16 were retained. Thus the
database contained 512 texture images in total with 8 images
from each of the 64 texture classes. We used each image in the

database as the query image and retrieved the top 7 matches
for each query. Table VII shows the average retrieval rates
(i.e. percentage of correct images among the top 7 matches),
where the contourlet HMT outperforms the wavelet HMT.

TABLE VII

AVERAGE RETRIEVAL RATES.

wavelet HMT contourlet HMT
90.87% 93.29%

Comparing the retrieval rates for individual textures, con-
tourlet and wavelet HMTs each gives better retrieval rates for
certain textures. Figure 12(a) shows the texture images that are
better retrieved by wavelets than by contourlets by at least5%,
and Figure 12(b) shows those better retrieved by contourlets
by at least5%. From these �gures, it can be seen that the
textures better retrieved by wavelets are all characterized by
dominant vertical, horizontal, or� 45� directions, which are
the only directions captured well by wavelets. In contrast,the
textures better retrieved by contourlets exhibit more diverse
directional components (such as circular or irregular shapes).
This shows the superiority of contourlets in capturing direc-
tional information. For most textures, contourlet HMT texture
retrieval gives satisfactory texture retrieval performance with
retrieval rates above80%.
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Fig. 11. Textures (64 images) from the Brodatz database usedin our texture
retrieval experiments.

(a)

(b)

Fig. 12. Texture retrieval results: (a) textures that are better retrieved by
wavelets than by contourlets by at least5%; (b) textures that are better
retrieved by contourlets than by wavelets by at least5%.

VII. C ONCLUSION

We have studied the properties of the contourlet coef�-
cients of natural images. It is found that similar to wavelets,
contourlet coef�cients are highly non-Gaussian and exhibit
Markovian dependencies in the form of local clustering and
persistence across scales. Moreover, coef�cients across adja-
cent directions show more signi�cant mutual dependencies
compared to wavelets. Thus contourlet coef�cients exhibit
dependencies across all of scale, space, and direction. Con-
ditioned on these generalized neighborhood coef�cient mag-
nitudes, contourlet coef�cients are approximately Gaussian.

The dependencies across scales, space, and directions were
quantitatively compared using mutual information measures.
We have found that contourlet coef�cients of natural im-

ages show high inter-location dependencies on all their eight
neighbors, and also quite high inter-direction dependencies on
their cousins. When comparing dependencies on eachsingle
coef�cient, inter-scale dependencies become the highest for
most images.

Based on these �ndings, we have developed a contourlet
hidden Markov tree (HMT) model that captures the contourlet
property of highly non-Gaussian but conditionally Gaussian
distributions. Dependence on generalized neighborhood coef-
�cient magnitudes is modeled through the links between the
hidden states of the coef�cients. The contourlet HMT model
captures all inter-scale, inter-direction, and inter-location de-
pendencies through an effective tree-structured dependence
network.

We applied the contourlet HMT model to denoising and
texture retrieval, and obtained promising results. In denoising,
the contourlet HMT visually restores edges better than wavelet
HMT and other classical methods. In texture retrieval, the
contourlet HMT gives higher retrieval rates than wavelets for
textures that show high directionality. Both results suggest
that the contourlet transform and its proposed model capture
directional information well and offer a valuable tool in image
processing. Software for the implementation of the contourlet
HMT model can be downloaded from MATLAB Central
(http://www.mathworks.com/matlabcentral/ ).
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