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Directional Multiscale Modeling of Images
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Abstract— The contourlet transform is a new two-dimensional
extension of the wavelet transform using multiscale and dic-
tional Iter banks. The contourlet expansion is composed of
basis images oriented at various directions in multiple sdas,
with exible aspect ratios. Given this rich set of basis imags,
the contourlet transform effectively captures smooth conburs
that are the dominant feature in natural images. We begin wih
a detailed study on the statistics of the contourlet coef ants
of natural images: using histograms to estimate the margina
and joint distributions, and mutual information to measure the
dependencies between coef cients. This study reveals theghly
non-Gaussian marginal statistics and strong inter-locatin, inter-
scale, and inter-direction dependencies of contourlet coeients.
We also nd that conditioned on the magnitudes of their
generalized neighborhood coef cients, contourlet coef éents can
be approximately modeled as Gaussian random variables. Bad
on these ndings, we model contourlet coefcients using a
hidden Markov tree (HMT) model with Gaussian mixtures that
can capture all inter-scale, inter-direction, and inter-location
dependencies. We present experimental results using thisadel in
image denoising and texture retrieval applications. In dewising,
the contourlet HMT outperforms other wavelet methods in tems
of visual quality, especially around edges. In texture retieval,
it shows improvements in performance for various oriented
textures.

Index Terms—wavelets, contourlets, multiscale, multidirection,
image modeling, statistical models, multiscale geometrianalysis.

|I. INTRODUCTION

it was realized that wavelet coef cients of natural images
exhibit strong dependencies both across scales and between
neighboring coef cients within a subband, especially ardu
image edges. This gave rise to several successful joins-stat
tical models in the wavelet domain [4], [5], [6], [7], [8], I9

as well as improved image compression schemes [10], [11],
[12].

The major drawback for wavelets in two-dimensions is
their limited ability in capturing directional informatio To
overcome this de ciency, researchers have recently censi
multiscale and directional representations that can caphe
intrinsic geometrical structures such as smooth contours i
natural images. Some examples include the steerable pyrami
[13], brushlets [14], complex wavelets [15], and the cuetel
transform [16]. In particular, the curvelet transform, péered
by Candes and Donoho, was shown to be optimal in a certain
sense for functions in the continuous domain with curved
singularities.

Inspired by curvelets, Do and Vetterli [17], [18] developed
thecontourlettransform based on an ef cient two-dimensional
multiscale and directional Iter bank that can deal effeety
with images having smooth contours. Contourlets not only
possess the main features of wavelets (nhamely, multiscale a
time-frequency localization), but also offer a high degode
directionality and anisotropy. The main difference betwee
contourlets and other multiscale directional systems & th
the contourlet transform allows for different and exible

Image processing typically relies on simple statisticadlmonumber of directions at each scale, while achieving nearly

els to characterize images. Natural images tend to havaiercritical sampling. In addition, the contourlet transforraes
common characteristics that make them look “natural.” Thierated lter banks, which makes it computationally eferit;
aim of statistical modeling is to capture these de ning etar speci cally, it requiresO(N ) operations for aiN -pixel image.
teristics in a small number of parameters so that they can bén this work, we focus on image modeling in the contourlet
used as prior information in image processing tasks suchdmmain. Our primary goal is to provide an extensive study
compression, denoising, feature extraction, and inversb-p on the statistics of contourlet coef cients in order to gain
lems. A simple, accurate and tractable model is an essentiathorough understanding of their properties. We then de-
element in any successful image processing algorithm.  velop an appropriate model that can capture these propertie

Images have effectively been modeled using the wavelghich can be useful in future contourlet applications ity
transform [1], [2], which offers a multiscale and time-compression, denoising, and feature extraction. Simitar t
frequency-localized image representation. Initiallg ttavelet wavelet-based models, contourlet-based models need ¢o tak
transform was considered to be a good decorrelator for imjagmto account dependencies acrasmlesand space(or loca-
and thus wavelet coef cients were assumed to be independéans). However, as a “true” two-dimensional representation,
and were simply modeled using marginal statistics [3]. L,atecontourlets additionally allow us to model the dependency
acrossdirections In other words, contourlet modeling allows
us to jointly model all three fundamental parameters of alisu
information, namelyscale space anddirection

The rest of the paper is organized as follows. Section Il
introduces the basics of contourlets including their tfams
algorithm, structure, properties, and coef cient relaships.
In Section Ill, we study the marginal and joint statistics of
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contourlet coef cients of natural images using histogramdter bank [20] at each scale. Due to this cascade structure,
Section IV examines the dependencies between coef ciemsiltiscale and directional decomposition stages in the con

using mutual information. Inspired by these results, we d&surlet transform are independent of each other. One can de-
velop a hidden Markov tree (HMT) model for the contourletompose each scale into any arbitrary power of two's number
transform in Section V. In Section VI, we apply the contotirleof directions, and different scales can be decomposed into
HMT model in image denoising and texture retrieval. Finallydifferent numbers of directions. This feature makes corétsi

a conclusion is presented in Section VII. a unique transform that can achieve a high level of exifilit
in decomposition while being close to critically sampled
Il. BACKGROUND (up to 33% overcomplete, which comes from the Laplacian

pyramid). Other multiscale directional transforms havwbegi

a xed number of directions, or are signi cantly overcomfie

The primary goal of the contou_rlet constru_ctioq (171, [181depending on the number of directions). Figure 2 shows an
was to obtain a sparse expansion for typical images gl e frequency partition of the contourlet transfornereh
are piecewise smooth away frosmooth contoursTWo- he four scales are divided into four, four, eight, and eight

dimensional wavelets, with tensor-product basis funeties yjrectional subbands from coarse to ne scales, respegtive
shown in Figure 1(a), lack directionality and are only gotd a

catchingpoint discontinuities, but do not capture tigeomet- I 5 ;)
rical smoothnessf the contours.

Contourlets were developed as an improvement over
wavelets in terms of this inef ciency. The resulting tramish
has the multiscale and time-frequency-localization prige I
of wavelets, but also offers a high degree of directionaditd
anisotropy. Speci cally, contourlet transform involvesdis
functions that are oriented at any power of two's number
of directions with exible aspect ratios, with some exangple
shown in Figure 1(b). With such a rich set of basis functions, ( ; )
contourlets can represent a smooth contour with fewer eoef
cients compared with wavelets, as illustrated in Figurg.1(c Fig. 2. An example frequency partition by the contourletgfarm.

A. Contourlets

Figure 3 shows an example of the contourlet transform on
the “Peppers” image. For the visual clarity, only two-scale
decompositions are shown. The image is decomposed into a
lowpass subband and several bandpass directional subbands
We notice that only contourlets that match wiihth location
and direction of image contours produce signi cant coef -
cients. Thus, the contourlet transform effectively exjsliahe
fact image edges are localized in both location and diractio

P
/

Wavelet Contourlet
(©

Fig. 1. Contourlet and wavelet representations for ima¢@sExamples of

ve 2-D wavelet basis images. (b) Examples of four contoublasis images. Fig. 3. Contourlet transform of the “Peppers” image. The gmas
(c) llustration showing how wavelets having square sufsptirat can only decomposed into two pyramidal levels, which are then deoseqp into four
capture point discontinuities, whereas contourlets t@longated supports and eight directional subbands. Small coef cients are remloblack while
that can capture linear segments of contours, and thus fesstiegly represent |arge coef cients are colored white.

a smooth contour with fewer coef cients.

The contourlet transform is implemented via a two- ) ) )
dimensional lter bank that decomposes an image into sévef CO€f cient Relationships
directional subbands at multiple scales. This is accometls We de ne some important contourlet coef cient relation-
by combining the Laplacian pyramid [19] with a directionathips as depicted in Figure 4. For each contourlet coeftcien
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X, we de ne its eight adjacent coef cients in the same sub- I1l. CONTOURLET STATISTICS
band as itsieighbors(N X ). Next, the coef cient in the same A Marginal Statistics

spatial location in the immediately coarser scale is de aed We rst study the marginal statistics of the contourlet coef
its parent(P X ), and those in the same spatial location in thceients of natural images. Figure 5 plots the histograms of tw
immediately ner scale are its children. Note that each ahil '

. est subbands of the image “Peppers.” These distributions
has one parent and each parent has four children. We alsg., . X .

: ' . exhibit a sharp peak at zero amplitude and heavy tails to both
de ne coef cients at the same scale and spatial location by

in different directions as cousin€¥ ). This inter-direction sides of the peak. This implies that the contourlet tramsfor

) o : is sparse, as the majority of coef cients are close to zefe T

relationship is more important for contourlets than for elats . S ) )
L : . _kurtosis of the two shown distributions a2&:50 and 19:40,

as contourlets have more directions. From Figure 4, it can._. . . .

. T which are much higher than the kurtosis ®ffor Gaussian

be observed that there can be multiple cousins in certajn, ., . o L

o . ; ; . Istributions. Similar distributions are also observedadit

directions. This is because the basis functions correspgrta

the vertical and horizontal subbands are de ned over diffier sgbpanc_zls of other tGSt. Images. Thus, the subband ”_‘arg'”a'
. . distributions of natural images in the contourlet domaia ar
sampling lattices [21].

highly non-Gaussian.
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Cousins | 3 Fig. 5. Marginal statistics of two nest subbands of the irad®eppers.”
Parent T T T T i The kurtosis of the two distributions are measured at (e§@and (b) 19.40,
showing that the coef cients are highly non-Gaussian.

Fig. 4. Contourlet coef cient relationships.

Combining the relationships across scales, space, and gli- Joint Statistics
rections, we refer to the collective set of all parent (PX),
neighbors (NX), and cousins (CX) of each coef cieMt

" lized neiahborhoodh lationshi | transform coef cients without accounting for their depend
as ltsgeneralized neighbornoodnese relalionships play algieg 1t js clear that contourlet coef cients depend on each

important role n contourlet modeling, as will be seen "Bther since only contourlet functions that overlap and ddire
subsequent sections. tionally align with image edges lead to signi cant coef cits.
Figure 6 shows the conditional distributions of contoucketf-
cients, conditioned on their parent® K ), neighbors il X ),
and cousins@ X ), using the “Peppers” image. First, we notice
For the statistical studies in the next two sections, wat all of these conditional distributions exhibit a “bdie?
experiment with various natural images of sig2 512 shape where the variance of the coef cients is related to the
These images vary from simple edge-dominant images suflgnitude of the conditioned coef cient. Second, even tiou
as “Peppers” to highly textured images such as “Barbaradef cients are correlated due to the slight overcomplessn
Unless stated otherwise, for the contourlet transform, wg the contourlet transform, they aspproximatelydecorre-
use the 9-7 biorthogonal lters (referred to as 9-7 lters)ated since conditional expectatiofgX j | 0. Again,
for the multiscale decomposition stage and the McClellagimilar behaviors are observed at all subbands of other test
transformed directional Iters from the 9-7 Iters propas®y images. Therefore, we conclude that contourlet coef cenft
Cohen and Daubechies [22] (referred to as CD lters) for theatural images are approximatelpcorrelatedyet dependent
multidirectional decomposition stage. We partition theesh on each other.
and second nest scales into eight directional subbands, an These dependencies, however, laal. Figure 7 shows the
the two next coarser scales into four directional subbaaus, conditional distributions of contourlet coef cients cdtidned
obtain a frequency partition as shown in Figure 2. on distantrelatives and neighbors of the “Peppers” image. We
We would like to point out that in contrast to waveletspbserve that these conditional distributions are appraieity
where there exist many good wavelet lters, the Iter desiginvariant to the conditioned value, indicating indepermen
problem for contourlets is still an ongoing work. Thus, the Finally, we examine the conditional distributioms(X j
results of the contourlet transform in this paper should B&X = px), P(X jNX = nx) andP (X j CX = cx), where
viewed as an indication of its features and potential rathpk, nx, andcx are some xed values, as shown in Figure
as a comprehensive assessment. 8. The kurtoses of the shown conditional distributions are

Marginal statistics only describe individual behaviors of

C. Transform Setups
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Fig. 6. Conditional distribution of a nest subband of “Pepp,” conditioned on (a) pare® (X j P X)), (b) neighborP (X j NX ), (c) cousinP (X j CX).
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Fig. 7. Distribution of a nest subband of “Peppers” conadlited on (a) ancestors, (b) neighbors, and (c) cousihst distances of three coef cients away

%

3:90, 2:90, and2:99, conditioned on the coef cients' parents,their generalized neighborhoods. Speci cally, for a pafr o
neighbors, and cousins, respectively. In contrast to tigh hicontourlet coef cientsX and Y (such as coefcients in a
kurtoses (around 20) of the marginal distributions in Feghr subband and their parents), we use the following estimator
these conditional kurtoses are very close to the kurtosi3 of25]

for Gaussian distributions. Thus, we conclude that comgbur X ko kN (@ DK 1)
coef cients arenon-Gaussian but conditionally Gaussian N(X:Y)= 2 log 2 :
other words, the contourlet coef cients of natural imagas ¢ i N Kiki 2N

be accurately modeled by mixtures of Gaussian distribstion _ . L .
whose variances depend on their generalized neighborhﬁod\fi[here Kj is the number (?-f coef cient pairs g the joint

ef cients. We will explore this fact for developing contdet- ht:stograrr_w cleI(IjQ;J%, i =h' ki andk = iEiJ arel
based models in Section V. the marginal distribution histogram estimaté, is the tota

number of considered coefcient pairs, arld and K are
IV. DEPENDENCECHARACTERIZATION VIA the number of histogram pins a_lon)g and Y o!irections_
INFORMATION-THEORETICANALYSIS respectively. The rst term in (2) is the mutual information
histogram estimate, while the second term is a partial bias
contourlet coef cients in complement to the qualitativedst corrgctlon term. It can be_ ShOWI:I that_ even after the plas 'S
partially removed, the residual bias still causes the ettim

in the previous section, using mutual information as a MEASY, underestimate the mutual information and the estimate ca

of dependencies [23]. Our goal is to compare the depenctencdﬁly serve as a lower bound [25]

across scales, space, and directions in the contourletidoma One way to tighten the estimation bound is by choosing

andK to give the maximum estimate in (2). Empirically, we
found that using

)

In this section, we quantitatively study the joint statistof

A. Mutual Information and Estimation

Mutual information between two random variablés and
Y with joint densityp(x;y) and marginal densitieg(x) and J = K = roundN=3000) + 12; 3)

p(y) is de ned as [24] i i i
ZZ where round) denotes rounding to the nearest integer, yields

1(X;Y) = p(x;y)log p(x:y) dxdy: (1) 9ood mutual information estimates for general natural iesag
p(x)p(y) For mutual information involving a large set of variables,
Mutual information can be interpreted as how much infothe estimator in (2) becomes inaccurate. For example, con-

value increases with increasing dependence between the tvetween contourlet coef cients at a particular subband (de

variables. noted byX) and a subset of their generalized neighborhoods
We resort to nonparametric histogram estimation of mutu@enoted byf Y; gi'\il ). As the subset siz®l increases, mutual

information [25], [26] between contourlet coef cients andnformation estimation accuracy decreases exponenfi2diy
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Fig. 8. Conditional distribution of the coef cients of a 8¢ subband of “Peppers” on (a) their pareRt&X j PX = px), (b) neighbord (X j NX = nx),
and (c) cousin® (X j CX = cx). The kurtosis of the distributions are measured:80, 2:90, and2:99, respectively.

In such cases, we follow the ?Approach in [23] that replaces tthe mutual information estimates for the “Lena” image using

high dimensional variabléY;gZ; by its suf cient statistic

W . .
T= ajYij;
i=1

where a; are constant weights. Thdr(X; T) involves only

(4)

two variables and can be accurately estimated as in (2). Fr%}1

the data processing inequality [24], we have

L(X;T) (5)

in (5) by choosinga; to maximizel (X ;T), using standard
optimization algorithms in MATLAB.

B. Estimation Results

different combinations of pyramidal (P) Iters: the Haardan
9-7 lters, and directional (D) lIters: the CD lters [22] ad
the ladder lters by Phoong et al. (referred to as PKVA Itgrs
[27]. We nd that replacing the Haar lters by the 9-7 lters
for the multiscale decomposition stage signi cantly reesiall
inter-scale, inter-location, and inter-direction mutiugbrma-
of the contourlet coef cients. This suggests that thé 9
Iters are superior to the Haar Iters in terms of whitening
the contourlet coef cients. Similarly, replacing the CDtelrs
by the PKVA lters for the directional decomposition stage
reduces the inter-direction mutual information. This gades
the PKVA lIters are more effective in localizing edge dirext
and should lead to better performance in applications. Wgai
we note that designing more effective directional lIters fo
the contourlet transform is still an ongoing work, wheretdéet

We present the mutual information estimation results f&Gontourlet lters are expected to be found.

three representative images “Lena,” “Barbara,” and “Pegpe

in Table I, noting that other images give similar results" ) .
using different wavelet Iters. Compared with wavelet ceef

All images show signi cant mutual information across all o
scales, space, and directions, which reinforces our ohsens

in Section 1l that coef cients are dependent on their gene
alized neighborhoods. At ne scales, we empirically nd tha

I (X;NX) is higher thanl (X ;CX), which is higher than

As a comparison, Table Il also displays the mutual infor-
ation estimates of wavelet coef cients for the image “L&na

cients, contourlet coef cients exhibit similar inter-seaand
|nter-location dependencies but much higher inter-dioect
dependencies.

TABLE I

I (X;PX). Therefore, the eight neighbor coef cients contain murtuaL INFORMATION ESTIMATES FOR CONTOURLET AND WAVELET

the most information about the coef cients. This is esplgia
true for highly textured images like “Barbara,” since forcku
images large coef cients correspond to highly texturedaare
which span relatively large image areas with similar dicel
patterns.

TABLE |
MUTUAL INFORMATION ESTIMATES BETWEEN A CONTOURLET
COEFFICIENTX AND ITS PARENTP X, ITS SPATIAL NEIGHBORSN X , AND
ITS DIRECTIONAL COUSINSCX .

Lena | Barbara| Peppers

I(X;PX) 0.11 0.14 0.10
[(X;NX) 0.23 0.58 0.17

I (X;CX) 0.19 0.39 0.14
I(X;PX;NX ) 0.24 0.58 0.17

I (X;NX;CX ) 0.26 0.59 0.20

I (X;PX;CX) 0.21 0.40 0.16
I(X;PX;NX;CX ) | 0.26 0.59 0.20

REPRESENTATIONS OF THEL ENA" IMAGE USING DIFFERENT FILTERS

Contourlets
P- lter; D- lter I(OX;PX) TITOX;NX) [ I(X;CX)
Haar; CD 0.18 0.33 0.32
9-7; CD 0.11 0.23 0.19
9-7; PKVA 0.11 0.24 0.15
Wavelets
Filter I(OX;PX) TITOX;NX) [ I(X;CX)
Haar 0.20 0.27 0.14
Daubechies 4-tapg 0.14 0.23 0.08
Daubechies 8-tapg 0.11 0.20 0.05

Table Il compares the inter-direction and inter-location-
tual information for different directional partitioninglsemes
to partition the nest scale into 4, 8, and 16 directions.
Each further directional partition increases the inteeclion
dependency while decreasing the inter-location deperydenc

C. Single Coef cient Estimates

The mutual information estimates in Table | depend on the Despite the observation that neighboring coef cients garr
choice of Iters and number of directions. Table Il showshe strongest dependency, incorporating neighbors iatesst
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TABLE Il
MUTUAL INFORMATION ESTIMATES FOR DIFFERENT DIRECTIONAL
PARTITIONS OF THE FINEST SCALEDATA ARE OBTAINED USING 9-7

P3  The parent coef cient is typically the most signi -
cant predictor when generalized neighborhood coef-

. ., cients are considered individually.
PYRAMIDAL FILTERS AND CD DIRECTIONAL FILTERS ON THE"“L ENA

IMAGE.
V. IMAGE MODELING

4 directions | 8 directions | 16 directions . .
X NX) 0.26 0.23 0.20 We want to develop a statistical model that can incorpo-
1(X;CX) 0.14 0.19 0.19 rate the properties of contourlet coef cients summarized i

Section IV-D while possessing other desirable charattesis
. . . . Speci cally, an ideal statistical model should: (i) accials
cal_ models is not simple. Indeed, as every coef clent haime'gmodel all properties P1-P3 of contourlet coef cients, figve
neighbors, using a contextual model would result in a complg simple structure to enable ef cient training algorithrasd

dependence network which is undesirable. To simplify th(ﬁi) be de ned on a small number of parameters to allow
model, we want every coef cient to be modeled to depend Alcurate training with limited data

only asingle coef cient Thus in the next step, we measure Properties P1 and P2 suggest that each contourlet coef -

and compare the mutual information between the coef Ciené?ent can be accurately modeled by a mixture of Gaussian

and each of their neighbors and cousins individually r"j‘th&rstributions where the condition for being in each Gaussia
than as a collective set. o . )
distribution depends on the generalized neighborhood-coef

_Tab_Ie IV pr_esents est|mat|o_n results of mutual mformatlor(l:iem& A good candidate for this is the hidden Markov
with singleneighbor and cousin. To keep the results manageodel (HMM) which has been used effectively for the wavelet
able, we reduce the data size by grouping the measurements

o . ransform [7]. AnN -state HMM associates each coef cient
and summarizing each group into an averadg& ; refers to _ : . g .
. ; - ; with a hidden statevariable, randomly distributed over it$
i-th order neighbors where= 1 denotes the four adjacent » . ) .
states. Conditioned on its state, each coef cient is matiele

neighbors and = 2 denotes the four diagonal neighborsuSin a Gaussian distribution with parameters depending on
CX; refers to thej-th order cousins, wherg = 1 denotes 9 P P 9

: : . o the state. Therefore, each coef cient is characterizedrb a
the two immediate adjacent directiosy 2 denotes the next dimensional state probabilities vecipiand anN -dimensional
two directions, and so orl.(X;NX;) and|(X;CX;) are P

. . . tandard deviation vector (we assume contourlet coef cients
the average of the mutual information contributed by eag! ) . .
. . ) ave zero-mean since all contourlet basis functions hane ze
of the fouri-th order neighbors and each of the tweth

order cousins, respectively. For edge-dominant images m's(um)

“Lena” and “Peppers,” we empirically nd that(X;PX) p=(puip::ipn)’; and  =( 1 200 n)T; (6)

is higher thanl (X ; NX;), which is higher thar (X ; CXj),

for all i. Thus,the parent coef cient becomes the most sigtherel;2;:::;N denote the states.

ni cant predictor when genera”zed neighborhood coefrig The inter-coef cient dependenCieS in HMMs are established
are considered individuallyThe exceptions are highly texturedPy links between théidden state®f dependent coef cients.
images like “Barbara"’ where Sing|e a neighbor coef Cien{\SSOCiated with each link between coef cientsandn is an

remains the dominant predictor. N N. state transition p.r(.)bability matrii min Wh.er_e its(k; 1)
entry is the the probability that the coef cient is in statek
TABLE IV given the coef cientn is in statel. To reduce the number of
AVERAGE MUTUAL INFORMATION ESTIMATES WITH A SINGLE PARENT, parameters like in the wavelet-domain HMM [7] we “tie” all
NEIGHBOR, AND COUSIN. contourlet coef cients in the same subband to share the same
[ena | Barbara| Peppers set of mgdel parameters. .
T(X:PX) | 011 ] 0.14 0.08 The hidden Markov tree (HMT) model [7] is an HMM
H(X;NX4) | 009 031 0.07 that uses a quad-tree dependency structure. More precisely
Il((;(<2;(< f; 8'% 8'% 8'82 the HMT model establishes links between the hidden state
I(X:CX5) | 006 | 017 0.05 of each coef cient and those of its four children. The quad-
I(X;CX3) | 006 | 0.20 0.04 tree structure of the HMT models directly model inter-scale

dependencies, while indirectly modeling other dependsnci
between neighboring coef cients via their links to a common
D. Summary ancestor. The motivation for adapting the HMT model is
Based on the measured statistics in Sections Ill and I¥ecause of the property P3 which states the parent coef cien
contourlet coef cients of natural images possess the faltg is the most signi cant predictor when the generalized neigh
properties: borhood coef cients are compareddividually. Furthermore,

P1  Contourlet coef cients are marginally non-Gaussiathe HMT model has a simple tree structure, which enables
and dependent on their generalized neighborhoeficient training using the expectation maximization (EM)
coef cients. algorithm. In particular, with only two statedN(= 2), the

P2  Conditioned on the magnitudes of their generalizédMT model requires a relatively small number of parameters.
neighborhood coef cients, contourlet coef cient areTwo-states mixture models also possess an intuitive appeal
zero-mean Gaussian distributed. that their two states correspond to the two modes in natural
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images: edges and smooth areas. We empirically veri ed thgiven its parent is also small. However, state 2 (i.e., coeht

the marginal distributions of the contourlet coef cientsdach being large) exhibits less persistent across scales. Tasome

subband (e.g. see Figure 5) can be accurately modeled bfpiathese is because small contourlet coef cients corragpo

mixture of two zero-mean Gaussian distributions. to smooth image regions; if the parent is small, all of its
Speci cally, for a contourlet decomposition df scales and children are likely to be small. Whereas, a large contourlet

m; directional subbands within scaje(j =1;2;:::J, from coef cient is obtained only when the corresponding conlkeur

coarse to ne), a contourlet HMT model contains the follogin basis function aligns with both location and direction of an

parameters. image edge. Thus, on a quad-tree of contourlet coef cients,
Pk (Wherek = 1;:::;m;): for the root state probability from coarse to ne scales the set of large coef cients beceme

Aj (wherej = 2;:::;J, andk 1;::0;,my): for
the state transition probability matrix to the directional o
subbandk at scalej from its parent subband at scale®- Denoising

VI. APPLICATIONS

j L We apply the contourlet HMT model developed in the
ik (wherej =1;:::;3, andk = 1;:::;m;): for the previous section to denoising of zero-mean additive white
Gaussian standard deviation vector of the subband at scaigussian noise. In the contourlet domain, we can write

j and directionk.

Compared with the wavelet HMT model, the contourlet )
HMT model has a major advantage is that it accounts for inté¥hereu, v, and e are contourlet coef cients of the clean,
direction dependencies while the wavelet HMT model do&9isy, and additive noise images, respectively. The probge
not. Figure 9 illustrates this difference. In the wavelet FIM O €stimateu givenv. _
model, the parent-children links are always in the samecdire e rst t an HMT model to the noisy contourlet coef -
tion among three wavelet directions. As a result, the wave@€NtSV to obtain a parameter sey . From this, we obtain a
HMT models coef cients on each direction independently. If'0del for the clean contourlet coef cients, by subtracting
contrast, contourlet coef cients can have their four chéidin e noise variances from the variances in the model
two separate directional subbands. As a result, the depeade ( gj‘_‘k)_n ).m)Z = ((]Vk)n )_m)Z ( §ffk)-n ))2 . (8)
tree in the contourlet HMT can span several adjacent doesti . . o
in the ner scales, and thus inter-direction dependencies avhere the triplgj; k; n’) denotes tha-th contourlet coef cient
modeled in a similar way as inter-location dependencies (38 the subband indexed by scgleand directionk; the index
Figure 9(c)). In other words, the contourlet HMT modem denotes the state; ar{@). = x for x 0O and(x). =0
effectively captures all dependencies across scalesespad for x < 0. Note that because of the “tying” of contourlet

V=u+e; (7

directions. coef cients in each subband,j(;‘li;)n = j(;‘é) for all n. The
Counting the number of free model parameters, where thgise variancé {5, )? can be estimated using a Monte-Carlo
number of statesN = 2, we count one free parameteimethod: by repeatedly generating random white noise images

in each state probability vectqr;,, and two in each state and averaging their variance in the contourlet domain.
transaction probability matrik .« (the other parameters being  With the HMT model ,, the denoising problem can then
constrained to sum with these parameters to unity), and twe formulated into a Bayesian estimation problem where we
in each jx . Therefore, the contourlet HMT model requiresvant to estimate the quantit [Uixn j Vikn ; o] for each
three parameters for each coarsest (root) subband and festitourlet coef cient(j; k; n ). Note that given its stateSn |
parameters for each ner subband. For the subband partitiafe contourlet coef cient is assumed to be Gaussian and the
ing scheme in Figure 2(b) with 4, 4, 8, and 8 directions frofroblem is reduced to estimating zero-mean Gaussian signal
coarse to ne scales, the model has 92 free parameters in tofd zero-mean Gaussian noise. The solution to this problem is
It should be noted that there exist many other forms gfell known [7]

Gaussian mixture and tree models outside the HMM family .
[9], [28], as well as variations of within the HMM family  E[Ujn J Vikn 5 uiSikn = m]

[8], [29], [30]. For example, the models in [29] are based ( E_uk)n )m)2
LK, )

on enlarged parameter sets that require more computation fo = Vikn = (9)
ining. Wi i ( {om ym )2+ (S )2

training. With the goals of keeping the parameter set small (Gik;n )sm jikin

and ensuring ef cient algorithms, we choose the simple HMT From this, using the state probabilify(Sijxn = m j

model with two states. Vikn ; u), Which can be obtained from the EM algorithm

" 7’
~ Table V shows the HMT parameters of the “Peppergs a by-product during training, we obtain the nal estimate
image obtained via the EM training algorithm [7]. Accordinggr the clean coef cients

to the standard deviationsjy , states 1 and 2 show two X

clearly different modes of coef cients being large and dmal E[Ujkn ] Vikn 5 ul = P(Sikn = Mj Vikn 5 u)

which correspond to edge and smooth parts of the image, m

respectively. The state transition matricdsx capture the ( E,uk) ny: m)2

dependencies among coef cients. In particular, they show a ) 5 (&) g Vikin - (10)
( (jikin );m) +( jikin )

high probability of a coef cient being small (i.e., in sta®)
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Direction

P

= o= o= o
.HC7%C

Hﬂt

H

Scale
00— 0

=0

(b) (©

Fig. 9. Parent-children relationship for (a) wavelets ahjl  possible contourlet decomposition. Black squaresesgmt parent coef cients with white
squares as their children. Notice in the contourlet casegranp coef cient can have its children spread over two sadba(c) Dependency links between
subbands (represented by black circles) of the contoudebmposition with 4, 4, 8, and 8 directions from coarse to swales.

@)

We apply the above denoising algorithm to noisy versions
of several test images and the results are shown in Table

VI. Also in the table are the denoising results of the same

k=1 k=2 k=3 k=4
state 1] state 2| state 1| state 2|| state 1| state 2| state 1] state 2
[ Pix | 067 | 033 ]] 032 ] 068 [[ 027 [ 073 ]| 075 | 025 |

Aoy state 1|| 0.87 0.02 0.83 0.04 0.74 0.05 0.72 0.03
state 2|| 0.13 0.98 0.17 0.96 0.26 0.95 0.28 0.97

Az state 1|| 0.14 0.04 0.32 0.02 041 0.02 0.69 0.02
state 2 0.86 0.96 0.68 0.98 0.59 0.98 0.31 0.98

A 3ok state 1]] 0.22 0.08 0.29 0.02 0.52 0.01 0.65 0.02
state 2 0.78 0.92 0.71 0.98 0.48 0.99 0.35 0.98

A 4.0k state 1|| 0.82 0.00 0.35 0.00 0.55 0.01 0.38 0.00
state 2|| 0.18 1.00 0.65 1.00 0.45 0.99 0.62 1.00

A 4.0k state 1|| 0.36 0.00 0.44 0.00 0.40 0.01 0.41 0.00
state 2 0.64 1.00 0.56 1.00 0.60 0.99 0.59 1.00

1k 160.10 [ 60.16 [] 258.30 [ 84.76 || 165.04 ] 59.00 ][ 168.01| 76.82
2k 59.88 | 12.29 |[ 98.37 | 18.79 || 70.06 | 21.79 || 70.83 | 27.18
3;2k 7.71 7.68 76.11 | 1162 || 20.62 | 7.90 39.47 | 6.90
3;2k 3759 | 9.65 27.89 | 8.69 4166 | 853 21.77 | 831
4;2k 1469 [ 3.20 33.65 | 526 16.05 | 3.57 17.76 | 4.38
4;2k 16.47 3.43 31.46 5.20 17.91 3.66 17.57 4.34

TABLE V
CONTOURLETHMT PARAMETERS OF THE IMAGE'PEPPERS’
TABLE VI

DIFFERENT METHODS

PEAK SIGNAL-TO-NOISE RATIO (IN DB) OF DENOISED IMAGES USING

noisy images using the Wiener lter (“wiener2”), the waviele] image | noise | noisy | wiener2 | wavelet | wavelet | contourlet

thresholding method with threshold = 3 , and the wavelet - 'e‘ée(') — (52 . 4%) t;‘g’g;‘- '2"5'3‘";5 '2"5'3‘"12
e . . ena . . . . .

HMT denoising method [7]. In terms of peak 5|gnal-to-n0|s_e 0 653 2597 2526 2721 5700
ratio (PSNR), the wavelet HMT and the contourlet HMT 50 1463 | 24.75 | 2420 | 25.89 26.04
methods produce comparable results. Both HMT methodBarbara ig ig;g gg-gg gg-gg gi-éi gi%
outperform “wiener2” and wavelet thresholding. % 174827572196 2371 T
In terms of visual quality, the contourlet HMT produces Zelda 30 | 1883| 2867 | 28.24 | 30.67 30.00
ior denoised results. Figure 10 shows the denoisjn 20 10491 27010 | 2703 | 29.27 28.29
Superior denoise - g 9 50 | 14.61| 25.78 | 26.05 | 27.63 | 27.07

results of the “Zelda” image. It is clear that the contourlet

HMT removes most of the noise and produces the smoothest
image, even though it is not the best method in term of PSNB. .
. Texture Retrieval

Recently, more complex wavelet-based denoising schemes

(e.g., [31], [32], [28]), have been developed. While some The contourlet HMT model is also applied to content-based
have shown improvements over HMT algorithms, it is outsidéxture retrieval. The problem is to nd, given one query
the scope of this paper to provide detailed comparisons wigkture image, the texture images that are “most similait to
all denoising schemes. We only provide a comparison whig¥ithin a large database of unlabeled texture images.
demonstrates that using HMT models, contourlets achieveln the contourlet HMT texture retrieval system, each textur
superior visual quality over wavelets. image is rst transformed into contourlet coefcients. An
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(d) (e) ®

Fig. 10. Denoising results of “Zelda” image: (a) “Zelda” ige (b) noisy image (noise standard deviatio®G; PSNR =14:61dB), (c) wiener2 (PSNR =
25:78dB), (d) wavelet thresholding (PSNR 26:05dB), (e) wavelet HMT (PSNR 27:63dB), and (f) contourlet HMT (PSNR 27:07dB).

HMT model is then t to the contourlet coef cients, and thedatabase as the query image and retrieved the top 7 matches
HMT model parameters are extracted as image features. Toe each query. Table VII shows the average retrieval rates
Kullback-Liebler distances (KLD) between the query imagé.e. percentage of correct images among the top 7 matches),
model and each database image model are measured anduwhere the contourlet HMT outperforms the wavelet HMT.
database images that give the smallest KLD are retrievegl. Th

KLD is de ned as [24] TABLE VI
Z p(X j ) AVERAGE RETRIEVAL RATES
. . X _ . q .
DX o) kp(X ] i))= p(x] q)log p(xj i) dx: wavelet HMT | contourlet HMT
(11) 90.87% 93.2%
Retrieval based on KLD can be justied as retrieval by the
maximum likelihood (ML) selection rule [33]. Comparing the retrieval rates for individual textures, con

There is no closed form expression for the KLD betweetourlet and wavelet HMTs each gives better retrieval rages f
HMT models. To estimate the KLD between two HMT modeertain textures. Figure 12(a) shows the texture imagesitiea
els, one can resort to a Monte-Carlo method that randontigtter retrieved by wavelets than by contourlets by at 8%t
generates multiple sets of data using the query model amd tleand Figure 12(b) shows those better retrieved by contaurlet
computes their likelihoods against each candidate model. Ay at least5%. From these gures, it can be seen that the
alternative method is to compute an upper bound of the KLxtures better retrieved by wavelets are all characterine
based on the log-sum inequality [34]. dominant vertical, horizontal, or 45 directions, which are

In the retrieval experiments, a subset of the Brodatz imagee only directions captured well by wavelets. In contris,
database [35] was used. This subset contains 64 differéestures better retrieved by contourlets exhibit more dige
textures of size 512512 and is shown in Figure 11. Eachdirectional components (such as circular or irregular sbap
of these textures was partitioned into 16 sub-images of sizhis shows the superiority of contourlets in capturing clire
128 128, and only 8 of the 16 were retained. Thus th&onal information. For most textures, contourlet HMT tenet
database contained 512 texture images in total with 8 imagesrieval gives satisfactory texture retrieval performanvith
from each of the 64 texture classes. We used each image initbigieval rates abov80%
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Fig. 11. Textures (64 images) from the Brodatz database insear texture
retrieval experiments.

Fig. 12. Texture retrieval results: (a) textures that ard#ebeetrieved by
wavelets than by contourlets by at leds¥; (b) textures that are better
retrieved by contourlets than by wavelets by at |zt

VIl. CONCLUSION

We have studied the properties of the contourlet coef -

cients of natural images. It is found that similar to wavglet

10

ages show high inter-location dependencies on all thehteig
neighbors, and also quite high inter-direction dependsncn
their cousins. When comparing dependencies on saujie
coef cient, inter-scale dependencies become the highast f
most images.

Based on these ndings, we have developed a contourlet
hidden Markov tree (HMT) model that captures the contourlet
property of highly non-Gaussian but conditionally Gaussia
distributions. Dependence on generalized neighborhoett co
cient magnitudes is modeled through the links between the
hidden states of the coef cients. The contourlet HMT model
captures all inter-scale, inter-direction, and interalian de-
pendencies through an effective tree-structured depeeden
network.

We applied the contourlet HMT model to denoising and
texture retrieval, and obtained promising results. In d&ing,
the contourlet HMT visually restores edges better than \eave
HMT and other classical methods. In texture retrieval, the
contourlet HMT gives higher retrieval rates than wavelets f
textures that show high directionality. Both results swgjge
that the contourlet transform and its proposed model ceptur
directional information well and offer a valuable tool inage
processing. Software for the implementation of the corébur
HMT model can be downloaded from MATLAB Central

(http://www.mathworks.com/matlabcentral/ ).
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