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In Compressed Sensing, the sparse representation property of an unknown signal in a certain
basis has been used as the only prior knowledge for signal reconstruction from a limited
number of measurements. Recently, more and more research has focused on model-based
recovery algorithms, in which special structures of the unknown signal are exploited in
addition to the sparse prior. A popular structure is the sparse-tree structure exhibited in the
wavelet transform of piecewise smooth signals and in many practical models. In this paper, a
reconstruction algorithm that exploits this sparse-tree prior, the Tree-based Orthogonal
Matching Pursuit (TOMP) algorithm, is proposed and studied in detail. Theoretical analyses
and empirical experiments show that the proposed algorithm gives reconstruction quality
comparable with more sophisticated algorithms, while being much simpler.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In Compressed Sensing, the existence of a sparse repre-
sentation of an unknown signal in a certain basis has been
used extensively as prior knowledge for signal reconstruction
from a limited number of measurements [1–6]. Recently,
several recovery algorithms have incorporated special signal
structures such as block sparsity or tree sparsity into the
reconstruction process [7–11].

In [11,12] the Tree-based Orthogonal Matching Pursuit
(TOMP) algorithm was primitively introduced to recover
signals with a sparse-tree prior. In this paper, we further
investigate TOMP and derive a sufficient condition for
successful recovery of sparse-tree signals. Moreover, more
experiments are carried out to compare TOMP with more
recent tree-based recovery methods. The results show that
TOMP provides competitive quality with more sophisti-
cated methods, while being much simpler.
S National Science
-0916953.

),
u (M.N. Do).
The main contributions of this paper are new results on
TOMP, including: (1) a new theoretical analysis of the
algorithm's performance, (2) more organized experiments
comparing the proposed algorithm with other tree-based
reconstruction algorithms and (3) a detailed analysis on
computational complexity of TOMP.

The outline of the paper is as follows. First, existing sparse
inverse problems and reconstruction algorithms are reviewed
in Section 2. After that, the sparse-tree modelwill be presented
in Section 3. The proposed TOMP algorithmwill be introduced
in Section 4, followed by two implementation methods in
Section 5. The theoretical analysis of the proposed algorithm
will be provided in Section 6. Section 7 will provide some
experimental results, followed by the discussion in Section 8.
Finally, the paper will be concluded with Section 9.
2. Background

2.1. Sparse inverse problem and Compressed Sensing

For an unknown signal s of length N, suppose that only
a limited number of non-adaptive linear measurements
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(M5N) can be acquired due to physical constraints:

Φs¼ b; ð1Þ

where Φ is a fixed M � N measurement matrix, and b is a
length-M vector that contains the measured data. The
inverse problem is to reconstruct s from b.

Suppose that s has an expansion in some basis via a
fixed N � N transform matrix W as

s¼Wx: ð2Þ

If only K out of N entries (K5N) of x are non-zero then x is
called a K-sparse signal. The number of non-zero coeffi-
cients in x is called the sparsity of x:

SðxÞ ¼ ‖x‖0: ð3Þ

Let A¼ΦW , then the inverse problem (1) becomes

Ax¼ b: ð4Þ

Since M5N, both (1) and (4) are underdetermined
systems. To solve (4), most current methods use the sparse
prior and search for the sparsest solution:

min
x

SðxÞ s:t: Ax¼ b: ð5Þ

We refer to (5) as the sparse inverse problem.
In practice, most signals are not exactly sparse but can

be well approximated by sparse signals [13]. In such
signals, only K5N coefficients have significant values
(i.e. greater than some threshold) while the remaining
coefficients have very small values; and when these
coefficients are sorted in descending order, the coefficient
magnitude decays quickly. These signals are called com-
pressible signals. All Compressed Sensing algorithms work
with compressible signals.
2.2. Existing sparse reconstruction algorithms

Problem (5) is an NP-hard problem. One approach to
solve (5) is to use greedy search methods, such as [14,6,
15–17], to find the locations of the significant coefficients
in x. A popular and simple greedy method is Orthogonal
Matching Pursuit (OMP) [14,6]. Originally, OMP was devel-
oped to find the optimal sparse representation of a signal
in a redundant dictionary. Each OMP iteration searches the
dictionary for the atom that is most correlated with the
residual from the previous iteration and estimates the
value of the corresponding coefficient by orthogonally
projecting the data onto the whole set of selected atoms.
The main limitation of OMP is that each iteration must
correctly select an index. Once an index has been selected,
it cannot be removed from the selected set. StOMP [17],
CoSaMP [15], and Subspace Pursuit [16] improve upon
OMP by selecting more than one index at each iteration
and including a backtracking or pruning step to refine the
selected set.

Besides the greedy approaches, there are many other
approaches to solve the sparse inverse problem including
Basic Pursuit or l1-minimization [18,3–5], Majorization–
Minimization [19–21] and Approximate Message Passing
(AMP) [22].
2.3. Model-based reconstruction algorithms

Recently, more research has focused on recovery sparse
signals that embed additional structures. Intuitively, taking
into account these structures make the recovery process
easier, in terms of less required number of measurements
or faster recovery time.

In 2005, [10,11] independently proposed to exploit the
sparse-tree structure in the wavelet transform of piece-
wise smooth signals. In [11,12] TOMP was introduced to
recover signals with a sparse-tree prior. The same struc-
ture was also exploited in the Tree-based Majorization–
Minimization (TMM) algorithm [23] which is an extension
of Majorization–Minimization (MM) approach.

In 2010, Baraniuk et al. [7] formulated the theory of
Model-based Compressed Sensing for the recovery of sparse
and compressible signals that have sparse-tree or sparse-
block structures. These theories proved that it is advanta-
geous to use special signal structures as additional priors
for signal recovery. In particular, the authors proposed two
methods to recover sparse-tree and sparse-block signals
based on CoSaMP [15] and Iterative Hard Thresholding
(IHT)[24] algorithms.

The tree-structure of wavelet coefficients was also
incorporated into Bayesian-based methods, such as [8,9].
In these papers, the tree-structure was embedded in a
statistical model and different Bayesian inference methods
were used for the reconstruction, such as Variational
Bayesian [9] or Markov Chain Monte Carlo [8]. Although
these methods can give high quality results, the main
disadvantage is their expensive computation, as will be
discussed later in Section 6.3. Recently, Som and Schniter
[25] proposed a new message-passing-based method for
compressive imaging that takes into account the Markov-
tree prior.

3. The sparse-tree model of signals

3.1. The sparse-tree model

Many signals that we encounter in practice can be
modeled as trees. In this paper, we consider the following
sparse-tree model.

Definition 3.1 (Sparse-tree model). A signal x is said to
conform to the sparse-tree model if it satisfies the follow-
ing properties:
1.
 x is sparse or compressible.

2.
 The coefficients of x can be organized into one or

several trees.

3.
 The non-zero or significant coefficients of x are con-

nected together in rooted sub-trees of the trees.

4.
 When going from the roots to the leaves of the trees,

the maximum magnitude of the coefficients at each
level will be decreasing.

This sparse-tree model might seem very restrictive at
the first glance. However, it is an effective model for many
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real world problems and signals. In the following section,
we provide two examples in practice where this model can
be applied.

3.2. Examples of the sparse-tree model

3.2.1. Example 1
An interesting problem in which the sparse-tree model

can be applied is modeling the spreading of a disease in a
population. In this problem, each person in that popula-
tion is represented by a vertex of the tree and the sources
of the disease are represented by the roots. Suppose that
we do some random group testing on that population and
we are interested in discovering people who have acquired
the disease and the seriousness of the disease at each of
them. In this case, x is the vector of coefficients where each
coefficient represents the seriousness of the disease
demonstrating at each person. Intuitively, the seriousness
is decreasing with distance from the sources. A problem
similar to this case is the passing of a rumor in a
population where the roots are the sources of the rumor
and the coefficients represent the confidence of the rumor.

3.2.2. Example 2
Another example of the sparse-tree model is the

relationship among the wavelet coefficients of a piecewise
smooth signal. Consider (2) when the transform W is an L-
level 1-dimensional wavelet transform. In that case, the
entries of x consist of

x¼ fxðsÞ0;pg1rprN=2L ; fxðwÞ
l;p g

1r lrL; 1rprN=2L� lþ 1

� �
;

where xðsÞ0;p are the scaling coefficients and xðwÞ
l;p are the

wavelet coefficients. In this notation, l is the scale of a
wavelet coefficient, where 1 is the coarsest scale and L is
the finest scale, and p is the shift of a coefficient in a level.
The elements of x can be arranged into binary trees where
the roots are the wavelet coefficients at the coarsest level,

as shown in Fig. 1. Each wavelet coefficient xðwÞ
l;p has two

children xðwÞ
lþ1;2p�1 and xðwÞ

lþ1;2p. The entries in x can be
Fig. 1. The tree structure of the coefficient vector resulted from a 3-level w
significant coefficients and white nodes represent insignificant coefficients.
specified either in the vector form xi or in the tree-based
form xl;p.

By examining the wavelet transform x of a piecewise-
smooth signal, three distinguishing properties can be
observed:
P1
avele
Vector x is sparse or compressible; i.e. only a few entries
in x are non-zero or significant.
P2
 The non-zero or significant entries of x are likely to be
connected in a tree structure.
P3
 The wavelet coefficients tend to decay across scales from
coarse to fine scales [26].

Properties P2 and P3 are important additional priors
that have not been considered adequately in recovery
algorithms. These properties hold because each disconti-
nuity of the signal generates a set of large wavelet
coefficients in a “cone of influence” [26], which is also
referred to as the wavelet footprint [27]. In particular, if a
coefficient is non-zero or significant then its ancestors are
more likely to be non-zero or significant. Therefore, the
significant coefficients of x form the rooted sub-trees as
illustrated in Fig. 1.
3.3. Descendant and ancestor

In this section, we present several important concepts
that will facilitate the development of our proposed
algorithm. These concepts were introduced in the context
of wavelet tree model [28] and are recalled here for
completeness. Consider a signal x whose coefficients can
be organized into one or several trees.

A descendant of a node xi is a node xj that can be
reached from node xi by following the children nodes. For

example, in Fig. 1, all descendants of node xðwÞ
1;2 are

fxðwÞ
2;3 ; x

ðwÞ
2;4 ; x

ðwÞ
3;5 ; x

ðwÞ
3;6 ; x

ðwÞ
3;7 ; x

ðwÞ
3;8 g.

An ancestor of a node xi is a node xj that can be reached
from xi by following the parent nodes. The history set of a
node xi is the set of ancestors of xi up to its root. For
t decomposition of a length-16 signal, where black nodes represent
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example, in Fig. 1, xðwÞ
1;1 is an ancestor of node xðwÞ

3;1 and the

history set of node xðwÞ
3;1 is fxðwÞ

2;1 ; x
ðwÞ
1;1 g.

4. Tree-based orthogonal matching pursuit algorithm

This section describes in detail our proposed Tree-based
Orthogonal Matching Pursuit (TOMP) algorithm for solving
the sparse inverse problem for signals with the sparse-tree
characteristic. Let x be a K-sparse signal in RN which
satisfies the sparse-tree model. Let A be a M � N random
measurement matrix and b¼ Ax be the vector of measure-
ments. The ith column of A is denoted by ai.

Let Λk be the set of selected indices after the kth
iteration. The initial set Λ0 consists of indices of entries
which are expected to be significant at the roots of the
trees. For example, in the wavelet transform, all scaling
coefficients are likely to be significant.

Algorithm 4.1 (TOMP for signal conforming to the sparse-
tree model). INPUT
�
 M � N measurement matrix A.

�
 Length-M vector b of measurements.

�
 Relaxation parameter αA ½0;1�.

�
 Downward extending parameter d.

�
 Index array P that maps each node index to the index of

its parent.

�
 Index array Q that contain the indices of the children of

each node.

OUTPUT
�
 Reconstructed vector x̂ of length N which has a sparse-
tree structure.

PROCEDURE
1.
 Initialize the set Λ0 with indices of the entries at the
roots of the trees. Initialize the residual as

r0 ¼ b�Pspan ai :iAΛ0f gb: ð6Þ

Set k¼0 and stop¼ false

2.
 While stop¼ ¼ false:

(a) k¼ kþ1.
(b) Form the candidate set Ck that contains the indices

of the descendants of selected nodes within d
levels.

Ck ¼ ⋃
iAΛk� 1

DdðiÞ; ð7Þ

where DdðiÞ denotes the index set of all descendants
of nodes xi within d levels. Hence d is named the
downward extending parameter.

(c) Form the finalist set Fk as

Fk ¼ fiACk s:t: j〈rk�1;ai〉jZαmax
jACk

j〈rk�1;aj〉jg; ð8Þ

where α is a given relaxation parameter.
(d) Select the index ik from the finalist set Fk such that

ik ¼ arg min
iAFk

‖b�Pspan aj :jAΛk� 1 [HðiÞf gb‖2; ð9Þ
where HðiÞ denotes the index set of the ancestors of
node xi up to the root.

(e) Augment the index set as

Λk ¼Λk�1 [ HðikÞ; ð10Þ
where HðikÞ is the index set of the ancestors of node
xik up to the roots.

(f) Update the residual
rk ¼ b�Pspan ai :iAΛkf gb: ð11Þ

(g) If ‖rk‖22rε, a selected threshold, or the number of
selected columns exceed a certain limit, e.g. M=2,
set stop¼true
Non-zero coefficients of the estimated signal x̂, indexed
by Λk, are the solution of

AΛk
x̂Λk

¼ b�rk; ð12Þ
where AΛk

consists of columns of A indexed by Λk.
5. Implementation details

In this section, an implementation of Algorithm 4.1
based on Gram–Schmidt orthogonalization process is pro-
vided. In this implementation, whenever a new column ai

is selected, i is stored into the selected set Λk. At the same
time, ai is orthonormalized with respect to all of the
previously selected columns and then stored in the set of
orthonomalized selected columns Uk, named the Gram–

Schmidt selected set.
After Eqs. (6)–(8), for each node iAFk, a corresponding

sub-tree containing that node and its ancestors is formed.
Each column in faHðiÞg is orthonormalized against Uk�1

and the remaining columns in faHðiÞ\Λk� 1
g to form the set of

orthonormalized columns fa?
HðiÞg. This step is performed by

using the Gram–Schmidt process.
Then, the current residual is projected onto each sub-

tree and the resulting residuals are recorded and com-
pared.

rtemp ¼ b�Pspan aj :jAΛk� 1 [HðiÞf gb

¼ rk�1� ∑
jAHðiÞ\Λk� 1

〈rk�1;a?
j 〉a?

j :

The sub-tree that gives the smallest residual is selected.

ik ¼ arg min
iAFk

‖rtemp‖: ð13Þ

This gives the solution of (9). The selected set Λk and
the new residual rk are updated through (10) and (11).

The selected set Uk is updated by adding the selected
orthonormalized sub-tree:

Uk ¼Uk�1 [ fa?
HðikÞ\Λk� 1

g: ð14Þ

The algorithm terminates when the stopping rules are
satisfied. By caching the set of orthonomalized selected
columns, the computational cost at each iteration is sig-
nificantly reduced.
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6. Analysis of TOMP

In this section, we provide a theoretical analysis on the
performance of the proposed algorithm. First, we derive a
sufficient condition for the recovery of sparse tree signal
using TOMP in Section 6.1. Next, we analyze the effect of
the parameters on the algorithm in Section 6.2. Finally,
Section 6.3 analyzes the computational complexity of the
proposed algorithm and compares it with other methods.
6.1. Reconstruction condition

To set the context for our analysis, we recall the
definition of the cumulative coherence function in [29].

Definition 6.1 (Cumulative coherence function). Given a
dictionary D with atoms ϕλ. Let Ω be the index set of all
atoms in D.
The cumulative coherence function is defined as

μðΩÞ
1 ðKÞ ¼ max

Λ � Ω;jΛj ¼ K
max
ψAΩ\Λ

∑
λAΛ

j〈ψ ;ϕλ〉j; ð15Þ

where Λ is a subset ofΩ and ψ is an atom in the remaining
set Ω\Λ.

The condition for reconstruction, as stated in Theorem
6.4, is the same as the condition for Orthogonal Matching
Pursuit [29]. However, in this paper, the condition is
derived for the recovery of sparse-tree signals using our
proposed TOMP algorithm. For completeness, the result of
[29] is restated here.

Theorem 6.2 (Theorem 3.5 in [29]). Suppose that μðΩÞ
1 is the

cumulative coherence function of D and Ω is the index set of
all atoms in D. OMP will recover the sparsest K-term
representation of the signal whenever

μðΩÞ
1 ðK�1ÞþμðΩÞ

1 ðKÞo1: ð16Þ

Before stating our results, we would like to introduce
some basic notations that are required for later develop-
ment. Let x be the vector to be recovered and assume that
x satisfies the sparse-tree model. Let Λ be the index set of
non-zero coefficients of x, jΛj ¼ K . The nodes on the tree
that have indices in the set Λ are called the optimal nodes.
The data vector b can be represented as

b¼ ∑
iAΛ

xiai:

If after the ðk�1Þth iteration, the algorithm has correctly
found the indices of some non-zero coefficients in x, i.e.
Λk�1 �Λ, then the residual can be represented as

rk�1 ¼ b�Pspan ai :iAΛk� 1f gb

¼ ∑
iAΛ

xiai� ∑
iAΛk� 1

βðk�1Þ
i ai

¼ ∑
iAΛk� 1

xi�βðk�1Þ
i

� �
aiþ ∑

iAΛ\Λk� 1

xiai

¼ ∑
iAΛ

cðk�1Þ
i ai;
where

cðk�1Þ
i ¼ xi�βðk�1Þ

i ; iAΛk�1

xi; i=2Λk�1

(
ð17Þ

Also, note that

j〈rk�1;ai〉j ¼ 0 8 iAΛk�1

since rk�1 is the residual after orthogonally projecting b
onto the space spanned by the columns faigiAΛk� 1

.
In the following analysis, the levels of the nodes on the

tree are increasing from roots to leaves, with 1 being the
level of the roots, as described in Fig. 1.

Lemma 6.3. Assume that the signal x conforms to the
sparse-tree model. Let ~C k ¼Λk�1 [ Ck, where Ck contains
all the nodes descending from the nodes in Λk�1 up to d
levels. Then

max
jAΛ

jcðk�1Þ
j j ¼ max

jAΛ\ ~C k

jcðk�1Þ
j j ð18Þ

or equivalently,

max
jAΛ\ ~C k

jcðk�1Þ
j jr max

jAΛ\ ~Ck

jcðk�1Þ
j j ð19Þ

Proof. Suppose that x is a signal which conforms to the
sparse-tree model defined in Section 3. Let Ln be the set of
indices at level n of the tree. Then

max
iA Ln

jxij ¼ max
iAΛ\Ln

jxij; ð20Þ

since jxij ¼ 0 8 i=2Λ.
At the kth iteration, the candidate set Ck contains nodes

extended from Λk�1. Suppose that Λk�1 �Λ, i.e. the
algorithm has selected correctly nodes in Λ. If rk�1a0,
there is at least one node in Ck that is in Λ, or Λ \ Cka∅,
since all non-zero coefficients in x are connected in a
rooted tree.
Note that:

Λ\ ~Ck

� �
\ Λk�1 ¼ Λ\ Λk�1 [ Ck

� �� � \ Λk�1 ¼∅

and

Λ \ Ck
� � \ Λk�1 ¼Λk�1 \ Ck ¼∅;

since Λk�1 �Λ and Λk�1 \ Ck ¼∅.
From (17), jcðk�1Þ

j j ¼ jxjj for jAΛ\ ~C k and for jAΛ \ Ck.
Let n0 be the minimum level of nodes in Λ\ ~Ck, then

Λ\ ~C k ¼Λ \ ⋃
nZn0

Ln

( )
¼ ⋃

nZn0
Λ \ Ln

� 	 ð21Þ

First, consider the left-hand side of (19)

max
jAΛ\ ~C k

jcðk�1Þ
j j ¼ max

jAΛ\ ~C k

jxjj

¼ max
jA [ nZ n0 fΛ\ Lng

jxjj

¼ max
jA [ nZ n0 Ln

jxjj

¼ max
jALn0

jxjj;

where the decaying of coefficients across levels has been
taken into account.
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Next, consider the right-hand side of (19)

max
jAΛ\ ~C k

jcðk�1Þ
j jZ max

jAΛ\Ck

jcðk�1Þ
j j

¼ max
jAΛ\Ck

jxjj

Z max
jA Ln0 � 1

jxjj

Zmax
jALn0

jxjj: &

Theorem 6.4. Let x be a vector conforming to the sparse-tree
model with K non-zero elements. TOMP will recover x
correctly if the sensing matrix A satisfies

αμðΩÞ
1 ðKÞþμðΩÞ

1 ðK�1Þo1; ð22Þ
where αA ½0;1� is the relaxation parameter and Ω is the
index set of all columns of matrix A.

Proof. Suppose that x conform to the sparse-tree model
and x is exactly sparse with K non-zero elements. Consider
the case α¼ 1, in which the finalist set Fk contains only
one index.
At the kth iteration, the algorithm will find the correct

indices in Λ if

max
jACk \Λ

j〈rk�1;aj〉j4 max
jACk \Λ

j〈rk�1:aj〉j ð23Þ

Since we have j〈rk�1;ai〉j ¼ 0 8 iAΛk�1, condition (23) is
the same as

max
jA ~C k \Λ

j〈rk�1;aj〉j4 max
jA ~C k \Λ

j〈rk�1;aj〉j; ð24Þ

where Ck is expanded to ~C k ¼ Ck [ Λk�1.
Consider the right-hand side of (24):

RHS¼ max
jA ~C k \Λ

j ∑
iAΛ

cðk�1Þ
i 〈ai;aj〉j

rmax
iAΛ

jcðk�1Þ
i j max

jA ~C k \Λ
∑
iAΛ

j〈ai;aj〉j

r max
iAΛ

jcðk�1Þ
i jμðΩÞ

1 ðKÞ:

Next, consider the left-hand side of (23):

LHS¼ max
jA ~C k \Λ

∑
iAΛ

cðk�1Þ
i 〈ai;aj〉














¼ max
jA ~C k \Λ

cðk�1Þ
j þ ∑

iAΛ\fjg
cðk�1Þ
i 〈ai;aj〉














Z max
jA ~C k \Λ

jcðk�1Þ
j j� ∑

iAΛ\fjg
jcðk�1Þ

i jj〈ai;aj〉j
" #

Z max
jA ~C k \Λ

jcðk�1Þ
j j�max

iAΛ
jcðk�1Þ

i j max
jA ~C k \Λ

∑
iAΛ\fjg

j〈ai;aj〉j

Z max
jA ~C k \Λ

jcðk�1Þ
j j�max

iAΛ
jcðk�1Þ

i j max
jAΛ

∑
iAΛ\fjg

j〈ai;aj〉j

Z max
jA ~C k \Λ

jcðk�1Þ
j j�max

jAΛ
jcðk�1Þ

j jμðΩÞ
1 ðK�1Þ

¼max
jAΛ

jcðk�1Þ
j j�max

jAΛ
jcðk�1Þ

j jμðΩÞ
1 ðK�1Þ:

The last step follows from Lemma 6.3. Thus, the condition
such that the algorithm determines the column(s) correctly
at kth iteration is

μðΩÞ
1 ðKÞþμðΩÞ

1 ðK�1Þo1: ð25Þ

In the general case, when αo1, there will be more than
one node in the finalist set Fk. Following the same steps as
in the above proof, the condition such that after (8) step,
there is at least one correct node in Fk, is

αμðΩÞ
1 ðKÞþμðΩÞ

1 ðK�1Þo1: ð26Þ

Since the correct nodes must minimize the residual, after
the final selection step (9), ik must be in Λ. Given that the
signal follows the sparse-tree model, the index set HðikÞ
contains indices of the optimal nodes. Consequently, TOMP
will correctly recover the signal. □

6.2. Effect of parameter variations

Since TOMP selects entries by expanding a set of
selection trees, the final selected set is a set of connected
sparse-trees. Moreover, only tree branches that lead to the
smallest residual via orthogonal projection are selected at
each iteration.

The parameters dAZ;dZ1 and αA ½0;1� are the tuning
parameters for TOMP. Larger d leads to larger candidate
sets, which allows us to reach further down significant
coefficients of x, but at the cost of more computation per
iteration. On the other hand, small d helps to reduced
computational cost at each iteration by limiting the
number of candidates being considered but the finest
levels of the tree might not be reached. If the signal strictly
conforms to the proposed sparse-tree model, especially
property 4 in Definition 3.1, the finest level coefficients
will have small enough magnitudes to have significant
effect on the reconstruction quality. Otherwise, the recon-
struction quality will be affected if d is too small. Thus, by
varying d, one can control the trade-off between computa-
tional cost and robustness of the algorithm.

The relaxation parameter α allows further restriction of
the search space to the finalist set by a fast evaluation of
the inner products in (8) instead of a costly evaluation of
the residual norms in (9). Smaller values of α lead to bigger
finalist sets, which means more accurate selection, but also
at the cost of increased computation.

Some special cases for d are:
�
 d¼1 means the search space contains every node.

�
 d¼1 means only one new node, which is directly

connected to the already selected set, is selected at
each iteration. In this case the selection step (9) of
TOMP can be achieved via evaluating inner products
with residual rk�1.

Similarly, the special cases of α are:
�
 α¼ 0 leads to an exhaustive search of all possible
history sets within the candidate set to determine the
one leading to smallest residual.
�
 In general α¼ 1 means only one finalist is selected at
each iteration. In this case, if d¼1, TOMP is similar to
OMP except that TOMP selects a whole set HðikÞ rather



H.Q. Bui et al. / Signal Processing 108 (2015) 628–641634
than only a single ik. This selection approach ensures
that the recovered signal will have the tree structure. If
the signal satisfies our assumption P2, this modification
leads to the correct reconstruction, since coefficients in
HðiÞ are significant whenever coefficient xi is significant.

6.3. Computational complexity analysis

In this section, the computational complexity of TOMP,
in terms of the number of multiplications, will be analyzed
and compared with several algorithms, including OMP
[14,6], ModelCS (model-based CoSaMP) [7] and TSWCS
(Tree-Structure Wavelet Compressed Sensing) [8]. Since
the number of iterations is different for each method, the
average computational cost per iteration will be computed
and compared. The results are summarized in Table 1.

The comparison that we provide in this section is for the
recovery of a signal that has the sparse-tree structure in the
wavelet domain. Let N be the length of the signal, K be the
number of non-zero coefficients and M be the number of
measurements. Since the mappings between the nodes on
the tree and the indices are one-to-one, the terms nodes and
indices are used interchangeably in the following analysis.

6.3.1. Complexity analysis for TOMP
Assume that the signal x to be recovered is an L-level

wavelet decomposition of a length-N signal s. Let N0 be the
number of scaling coefficients of x. Then N0 ¼N=2L.
1.
Tab
Ave
term
wit
me
algo
dow

A

O
M
T

T

Ave
term
wit
me
algo
dow
Initialization step: In the initialization phase, all N0

columns of A which correspond to the scaling coeffi-
cients are selected. Let Λ0 be the initial set of selected
indices. The measurement vector is projected onto the
space spanned by these columns. In the Gram–Schmidt
implementation, these columns are orthonormalized

with each other, which has the complexity of O MN2
0

� �
multiplications. Consequently, the complexity for the

initialization step is O MN2
0

� �
.

le 1
rage computational complexity per iteration of the algorithms, in
s of number of multiplications, to recover a length-N, K-sparse signal

h sparse-tree structure in the wavelet domain from M random
asurements. In ModelCS, C is the cost of the tree-approximation
rithm being used. In TOMP, L is the number of levels and d is the
nward extending parameter.

lgorithm Average number of multiplications per iteration

MP OðMNþMK=2Þ
odelCS OðMNþCÞ
SWCS OðMN2Þ
OMP O MN

2L�d

� �

rage computational complexity per iteration of the algorithms, in
s of number of multiplications, to recover a length-N, K-sparse signal

h sparse-tree structure in the wavelet domain from M random
asurements. In ModelCS, C is the cost of the tree-approximation
rithm being used. In TOMP, L is the number of levels and d is the
nward extending parameter.
2.
 The first iteration: In the first iteration of the algorithm,
the candidate set C1 contains the indices of the nodes in
the first d-level of the wavelet trees. For N0 binary
wavelet trees, C1 has N0ð2d�1Þ candidates.
To find the finalist set F1, N0ð2d�1Þ inner products
between the residual and the columns of A with indices
in C1 must be computed. This step has the complexity

of O MN0ð2d�1Þ
� �

�O MN0ð2dÞ
� �

multiplications.

For each finalist in F1, the algorithm estimates the
residual that would be formed if the node and its
ancestors are selected. To do that, the corresponding
columns of A are orthonormalized against the pre-
viously selected columns with indices in Λ0 and against
each other. In TOMP, the candidate set is formed by
extending downward d levels from the selected nodes.
Thus, each finalist has at most d�1 ancestors that have
not been selected from the previous iterations. The
maximum complexity for this orthonormalization step

is 2M∑d�1
j ¼ 0N0þ j�O MN0dþMd2

� �
.

The total complexity for the first iteration is thus

O MN02
d

� �
þO F0 ðMN0dþMd2Þ




 �
;




�
where F0jj denotes the cardinality of the finalist set F0.
Typically, after the thresholding step in (8), there are
only several finalists in the set F0. Consequently, the

complexity of the first iteration is O MN02
d

� �
.

3.
 From second iteration onward: From the second itera-
tion onward, at each iteration, at most d nodes from the
candidate set are selected and their descendants are
added to the candidate set. Thus, the size of the
candidate set increases by a small constant at each
iteration. The complexity at each following iteration
can be approximated by that of the first iteration,
which is O MN02

d
� �

.

With this estimation, the complexity of k iterations of the

algorithm would be O k2dMN0

� �
. The total complexity for

TOMP is O MN2
0

� �
þO kMN02

d
� �

.

Since TOMP selects many indices at each iteration, the
number of iterations k for TOMP is less than the number of
non-zero coefficients K in signal x. Moreover, for most
practical applications of the tree model, the number of roots
N0 is small compared to the number of nodes on the tree. As
a result, the total complexity of TOMP is bounded by

O KMN02
d

� �
. Finally, the average complexity per iteration

for TOMP is approximately O MN02
d

� �
�O MN=2L�d

� �
.

6.3.2. Complexity analysis for OMP, modelCS and TSWCS
In OMP, at the nth iteration, N�nþ1 inner products

must be computed between rn�1 and the remaining
columns. After that, the selected column is orthonorma-
lized against all n�1 columns that have been selected
from the previous iterations. OMP stops after K iterations
and the total complexity is O KMNþMK2=2

� �
multiplica-

tions. Thus, the average complexity per iteration for OMP
is O MNþMK=2

� �
multiplications.
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CoSaMP improves over OMP by selecting many columns
at each iteration and refining them later, which requires a
smaller number of iterations. ModelCS is developed from
CoSaMP by applying a tree approximation algorithm during
the pruning step to maintain the tree structure on the
selected columns. As a result, ModelCS has a complexity of
OMP plus the complexity of the tree-approximation step.
Let C be the complexity of the tree-approximation algorithm,
the total complexity of ModelCS for k iterations is O kMNþð
Mk2=2þkCÞ multiplications. The complexity per iteration is
O MNþMkþCð Þ �O MNþCð Þ multiplications.

TSWCS uses Gibbs sampling and Markov Chain Monte
Carlo to infer the posterior distribution of each element in
the unknown signal. At each iteration, TSWCS needs to
sample each element of the signal sequentially, and thus
the total cost of TSWCS is significantly higher than OMP.
The computational complexity of TSWCS is approximately

O kMN2
� �

multiplications, where k is the number of

iterations. The average complexity per iteration for TSWCS

is O MN2
� �

multiplications.

7. Experimental results

In this section, three main experiments are presented.
First, to demonstrate the correctness of the recovery of
tree structure, a test signal is recovered using different
methods: OMP [14,6], CoSaMP [15], ModelCS (model-
based CoSaMP) [7], TSWCS (Tree-Structure Wavelet Com-
pressed Sensing) [8], and our proposed TOMP. Second, the
average reconstruction signal-to-noise ratios (SNRs) of
different methods are compared at different numbers of
measurements on a random piecewise smooth signal. The
execution times are also compared. Finally, the phase
diagram [17] of our proposed method is generated and
presented to show the phase transition of the algorithm
under different regimes.

We obtained the TSWCS and ModelCS code from the
corresponding authors. For a fair comparison between dif-
ferent methods, we modified the ModelCS code to use
MATLAB Wavelet Toolbox instead of Rice Wavelet Toolbox
as in the original code. This modification allows us to run all
algorithms on the same input. Moreover, ModelCS requires
an estimation of the signal sparsity as input. In our experi-
ments, we run ModelCS multiple times with varying values
and report the results which have maximum SNR. We vary
the sparsity from 10 percent the length of the signal to 50
percent the number of measurements.

The reconstruction quality is measured by using the
reconstruction signal-to-noise ratio (SNR), defined as

SNR¼ 10 log10
σ2
x

MSEðx; x̂Þ

� �
dB; ð27Þ

where σ2
x is the variance of the elements of the ground

truth vector x and MSEðx; x̂Þ is the mean squared error
between the original x and the reconstruction x̂.

7.1. Reconstruction examples

In this experiment, different methods are used to
reconstruct a perfect sparse-tree signal from a small
number of measurements. The test signal is a piecewise
polynomial with maximum order of 3 and one disconti-
nuity. The signal is decomposed by a 4-level wavelet
transform using Daubechies wavelets of 4 vanishing
moments. With this choice of the test signal and the
transform, the coefficient vector has a perfect tree struc-
ture since a wavelet with d vanishing moments is ortho-
gonal with any polynomial of degree less than d. The
measurement matrix is a random matrix of i.i.d. Gaussian
entries with normalized columns. In this setup, the length
of the input signal is chosen to be 64 and the number of
measurements is 35. For TSWCS and ModelCS, the recom-
mended values of the parameters are used. For our
proposed TOMP, dlev¼2 and α¼ 0:9. Fig. 2 shows the
reconstructed signals. Fig. 3 displays the reconstructed
trees, where black nodes are non-zero nodes. As shown
on this figure, TOMP, TSWCS and ModelCS maintain the
tree structure in the recovered signal very well, where as
OMP and CoSaMP fail to capture it. The reason for the
worse performance of OMP and CoSaMP is that these
methods do not exploit the tree structure exhibited in
the signal during the recovery process.

7.2. Performance comparison

In this experiment, the average performance of differ-
ent methods on random piecewise smooth signal with
different number of measurements are computed and
compared. For each number of measurements, 100 tests
are run with randomly generated measurement matrices
and test signals, and then the average reconstruction SNRs
are computed. The input signal is a random piecewise
smooth signal with 12 discontinuities. The signals has a
length of 1024 samples. The wavelet coefficients are
computed by a 6-level wavelet decomposition using Dau-
bechies wavelets with 4 vanishing moments. In this case,
the test signal is not exactly sparse and the coefficients are
connected loosely to a tree structure. This property can be
seen on the wavelet tree of a piecewise smooth signal of
length 64 on Fig. 4, where the significant coefficients are
displayed as black nodes. The values of the parameters of
TOMP are α¼ 0:9 and dlev¼ 2.

Fig. 4 compares the average performance of different
algorithms in recovering a random piecewise smooth
signal of length 1024, in terms of reconstruction quality
and execution time. Although TSWCS gives very high SNRs,
it is more computationally expensive as opposed to our
algorithm, as will be discussed in Section 8. As can be seen
from Fig. 4, the execution time of TOMP is closer to
OMP than ModelCS and TSWCS. This experiment empiri-
cally shows that TOMP and TSWCS still performs well
when the signal does not strictly conform to the sparse-
tree model.

7.3. Phase diagram

Phase diagrams [17] are used to describe visually the
performance of a reconstruction algorithm. A phase dia-
gram shows the probability of successful recovery of a
sparse signal under different regimes or problem suites. A
problem suite [17] SðK;M;NÞ is defined as a collection of
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Fig. 2. An example piecewise polynomial signal of length 64 and its reconstructions from 35 linear measurements using TOMP, TSWCS, ModelCS, OMP and
CoSaMP. (a) Original signal, (b) TOMP (32.3525 dB), (c) TSWCS (24.0876 dB), (d) ModelCS (19.0908 dB), (e) OMP (4.0952 dB) and (f) CoSaMP (4.3224 dB).
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random matrices of size M � N and K-sparse vectors of
length N. For recovery algorithms based on l1 relaxation
techniques, it has been observed that the transition from
success to failure occurs sharply along a predictable line in
the ρ�δ plane, where ρ¼ K=M and δ¼M=N for problem
suite SðK;M;NÞ. This is referred to as the phase transition
phenomenon. The empirically observed locations of the phase
transition can be predicted accurately in theory [30] for l1-
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Fig. 3. The wavelet trees of the original signal and reconstructed signals using TOMP, TSWCS, ModelCS, OMP and CoSaMP. Black nodes are non-zero nodes.
(a) Original, (b) TOMP, (c) TSWCS, (d) ModelCS, (e) OMP and (f) CoSaMP.
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based methods. However, for greedy methods, there has
been no theory for the prediction of the phase transition line,
although the phenomenon can be still observed empirically
in many cases.
In this experiment, the phase diagrams of the above
methods are computed and compared for sparse-tree
signals. For each set ðK;M;NÞ, a random sparse-tree signal
with sparsity of K is generated, together with a random
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Fig. 5. Phase diagram of different methods. The brighter shade shows higher success rate. (a) TOMP, (b) TSWCS, (c) ModelCS, (d) OMP and (e) CoSaMP.

H.Q. Bui et al. / Signal Processing 108 (2015) 628–641 639
measurement matrix of dimensions M � N. Fig. 5 shows
the phase diagram comparison between TOMP and other
methods when recover random sparse-tree signals. All
algorithms exhibit the phase transition phenomenon, with
sharper transition at higher number of measurements. Of
these methods, TOMP provides the highest rate of success-
ful recovery, demonstrated on the diagram by a larger area
of bright shade.
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8. Discussion

The above experiments show the competitive perfor-
mance of TOMP for 1-dimensional sparse-tree signals.
Compared with OMP, TOMP and other tree-based methods
give higher reconstruction quality, especially at a low
number of measurements. The TSWCS method gives the
highest SNR in most cases. A disadvantage of TSWCS is its
higher computational complexity, since at each iteration,
the algorithm needs to sample each element of the signal
to be recovered using Gibbs sampling. In contrast, at each
iteration, TOMP searches for the locations of only signifi-
cant elements. Compared with ModelCS, TOMP also has
less computational complexity since at each iteration of
ModelCS, the algorithm has to compute the inner products
of the residual with all columns of the measurement
matrix to “sense” the locations of the significant coeffi-
cients. On the contrary TOMP only needs to compute the
inner products between the residual and the candidate
columns. The highest computational cost of TOMP is the
projection onto the history set for each finalist, which can
be reduced by increasing the relaxation parameter α
(which in effect reduces the number of finalist sets).

As discussed in Section 6.2, there is a trade-off between
computational cost and robustness of the algorithm to
signals that do not conform to the sparse-tree model. This
trade-off is controlled by parameter d. If d is small then the
computational cost at each iteration will be low but the
finest levels of the tree might not be investigated. On the
other hand, a large value of d ensures that the algorithm
will find significant coefficients at deeper levels but the
computational cost will be higher. For signals that strictly
conforms to the sparse-tree model, the finest level coeffi-
cients will have small magnitudes and do not contribute
much to the reconstructed signal. Thus, d can be set to a
small value for these signals to reduce the computational
cost.

Although TOMP is specific designed for sparse-tree
signals, the algorithm still works with small deviations
from the model. This is empirically proved by the results
with piecewise smooth signal in Fig. 4.

For natural images, a separable wavelet transform does
not effectively exploit the fact that discontinuities are
formed along geometrically smooth curves. With a typical
image of size 256�256, a 2-dimensional wavelet trans-
form gives shallow trees with a maximum height of 8.
TOMP does not work effectively in this situation. The
recovery of images will be investigated in an upcoming
paper with a more effective geometric 2-dimensional
decomposition, such as curvelets [31] and contourlets
[32], where significant coefficients are successively loca-
lized in a tree structure in both location and direction.

9. Concluding remarks

Most existing Compressed Sensing recovery algorithms
still only exploit the sparse prior of signals, regardless of
any signal structure that may present. Despite an increas-
ing interest in model-based Compressed Sensing in the
past few years, the application of the proposed methods
has still been limited in practice. In this paper, we present
a simple yet effective algorithm that exploits the sparse-
tree structure of the signal for signal reconstruction. The
sparse-tree inverse problem has been formulated and its
usefulness has been justified. Based on that, the Tree-
based Orthogonal Matching Pursuit (TOMP) algorithm is
proposed and analyzed in detail, both theoretically and
empirically. The experimental results confirm the state-of-
the-art performance of TOMP with significantly lower
computational cost.
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