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Abstract—One of the fundamental assumptions in traditional

sampling theorems is that the signals to be sampled come from

a single vector space (e.g. bandlimited functions). Howerein
many cases of practical interest the sampled signals actugllive
in a union of subspaces. Examples include piecewise polynats,
sparse representations, nonuniform splines, signals withnknown
spectral support, overlapping echoes with unknown delay am
amplitude, and so on. For these signals, traditional samptig

schemes based on the single subspace assumption can be eltheS‘

inapplicable or highly inefficient. In this paper, we study a
general sampling framework where sampled signals come from

a known union of subspaces and the sampling operator is

linear. Geometrically, the sampling operator can be viewedas
projecting sampled signals into a lower dimensional spaceyhile
still preserving all the information. We derive necessary ad
sufficient conditions for invertible and stable sampling ogrators
in this framework and show that these conditions are applichle
in many cases. Furthermore, we find the minimum sampling
requirements for several classes of signals, which indicas the
power of the framework. The results in this paper can serve as
a guideline for designing new algorithms for many applicatons
in signal processing and inverse problems.

Index Terms—sampling, signal representations, union of sub-
spaces, linear operators, projections, invertible, stala, shift-
invariant spaces.
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Equation (1) shows that any bandlimited signdl) <

BL) s uniquely represented by its samplés(nT)}, .,
and provides a way to reconstrucft) from these samples.
Equation (2) corresponds to the practice of passing theakign
x(t) through an anti-aliasing filter before taking samples.

From this viewpoint, the Kotelnikov-Shannon-Whittaker
sampling theorem has been generalized by considering other
signal spacesS and other sampling functions (see, for ex-
ample, [3]-[11] and the references therein). In all of these
previous studies, the signals to be sampled are assumed to
come from a single vector space. However, as we will illustra
with the following examples, in many situations the sigrafls
interest actually live in ainion of subspaces

Example 1 (Stream of Diracs)The stream of Diracs is the
basic signal model for the recent sampling framework for
signals withfinite rate of innovatiorf12]-[14]. As illustrated
in Figure 1(a), a stream ok Diracs has the forme(t)
e, e 6(t — ti,), where {t;},_, are unknown locations

>L2(]R)

Sampling is a corner stone of signal processing becauswd {ck}szl are unknown weights. We see that once the
it allows real-life signals in the continuous-domain to bé{ locations are fixed, the signals live in /& dimensional
acquired, represented, and processed in the discretehtlonsabspace. Thus, the set of all streamdsoDiracs is a union
(e.g. by computers). One of the fundamental assumptionsah K -dimensional subspaces.

traditional sampling theorems [1]-[4] is that the signaie

Example 2 (Piecewise polynomialdylany transient sig-

sampled come from a single vector space (e.g. bandlimitedls in practice can be modeled by piecewise polynomials
functions). For example, the classical Kotelnikov-Shamno[see Figure 1(b)]. LetX (PP) denote the set of all signals
Whittaker sampling theorem can be presented as follow [$onsisting of K pieces of polynomials supported d6, 1],

% then {sincr (t — nT)},,

orthogonal basis for the spaSéBL) of bandlimited functions
whose Fourier transforms are supported withirr /T, 7w /T].
Specifically, for allx € SP}BL), we have

oo

>

n=—oo

Denote sing(t) = ez IS an

x(t) xz(nT) sincp(t — nT),

(1)
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where each piece is of degree less thiaWe cannot ensure
the sum of any two S|gnals |FY (PP) still has only K pieces
of polynomials, and thust;; PP) is not a vector subspace.
However, it is easy to verlfy that we do have a subspace once
we fix the locations of the discontinuities. TherefoPéI((PP)
is the union of the subspaces corresponding to all possible
discontinuity locations.

Example 3 (2-D Piecewise Polynomials}onsider  2-D
piecewise polynomials ofK pieces supported oro0,1]?,
as shown in Figure 1(c). More specifically, each piece is
a bivariate polynomial of degree less thdn This kind of
signal can be seen as a “cartoon” model for natural images,
since natural scenes are often made up from several objects
of smooth surfaces with smooth boundaries. Again, it is easy
to see that once we fix the boundaries, the signals lie on a
subspace of dimensioi d?. With all possible boundaries,
2-D piecewise polynomials live in a union of subspaces.
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For signals given in the above examples, traditional sam-
pling schemes based on the single subspace assumption can
be either inapplicable or highly inefficient. In principiee can
always extend the class of signals from a union of subspaces
to the smallest linear vector space that contains it, angycar
out sampling on that space. However, this strategy is often
inefficient since it ignores the additional prior infornuati
about the signals.

@) (b)

For instance, the smallest linear space containing Ake
1 term sparse signals in Example 4 is the space spanned by the
entire dictionary{¢x},- ,. In contrast, from the definition in
AT (4), we should be able to completely determine these sparse
- l - signals by using onl2K numbers, withK of them speci-
- o i B fying the index setl and the rest recording the coefficients

i (d'; I © {cx}. Similarly, for signals with unknown spectral support in
Example 6, the smallest linear space containing them is the
Fig. 1. Several examples in which the signals of interestectiom a union of - space of bandlimited functions supported on the entiretsgec

subspaces. (a) A stream of Diracs with unknown locationsveeights. (b) A . ; ;
1-D piecewise polynomial signal with unknown discontiguitcations. (c) A bandwiin, wmax], whose Nyquist rate is based on the whole

2-D piecewise polynomial with unknown boundaries. (d) Aeapping echo Pandwidthw,ax — wmin. However, the work in [20] shows
(shown in solid lines) that is a linear combination of thredsps (shown in that, by exploiting the additional prior knowledge abou¢ th
dashed ||nes) with unknown delays and amplitudes. (e) A|hm1t:i S|gna! in signal spectrum, it is possible to achieve a sampling rate we
frequency with unknown spectral support that only occupiésown fraction .
of the spectral banflumin, wmax]- below the above Nyquist rate.

Thus the examples above motivate us to fundamentally ex-

tend the traditional sampling theorems by consideringadgn

Example 4 (Sparse representatior§parse representationTom & union of subspacesstead of asingle space Our
lies at the heart of modern signal compression and denoispf§Posed sampling framework has close ties to the recerk wor

[15], [16]. In these applications, the final output signai&- ©N sampling signals witlfinite rate of innovatio{12]—[14],
term representation using a fixed basis or diction@iy};" , which demonstrates that several classes of non-bandiimite

(e.g. a Fourier or wavelets basis), written as signals can be uniformly sampled and perfectly reconstdict
In a general sense, signals with finite rate of innovatiorehav

fK — Z ki, (4) a known degree of freedom (i.e. innovation), but the locetio
el of the innovation are unknown (see Examples 1-3). Thergfore

these types of signals can often be effectively charaeteim/

where! is an index set o’ selected basis functions or atomsynions of subspaces.
Clearly, the set of all signals that can be representedsby ~ Another related work is the recent breakthrough in math-
terms from a given basis or dictionary constitutes a union efatics under the nanm@mpressed sensingy compressive
subspaces, with each subspace indexed by .set sampling[23]-[25], which shows that sparse or compressible

Example 5 (Overlapping echoesfonsider  overlapping finite length discrete signals can be recovered from small
echoes with unknown delay and amplitude [17], [18humber of linear, non-adaptive, and random measurements.
lllustrated in Figure 1(d), these signals have the formhe number of required measurements has the same order
a(t) = S, cer(t — ), where the pulse shapg(t) is of magnitude as the number of non-zero or “significant’
known; while the delaygt, }7=_, and amplitudegc; } -, are coefficients in the input signal, which is typically much stea
unknown. Clearly, the set of all possible echoes constitutthan the length of the signal. The literature on compressed
a union of subspaces, each of which corresponds tosensing so far only handles finite-dimensional signals.
set of delays {tk}szl- Signals of this type appear in Our proposed sampling framework with union of subspaces
many applications such as geophysics, radar, sonar, gtdvides a generalized and unified framework for finite rate
communications. In these applications, from a limited nembof innovation sampling, compressed sensing/compresaive s
of samples of the echo signals, one wishes to find out théing, and spectrum-blind sampling, in which new resultd an
delays and amplitudes. derivations are discussed. Moreover, the proposed framkewo

Example 6 (Signals with unknown spectral support): provides a geometrical approach to finite rate of innovation
Consider the class of continuous-time signals whose Fourgampling and suggest a path for extending the current com-
transforms only occupy a known fraction — butwatknown pressed sensing theory to infinite-dimensional setting$ an
locations — on a spectral band,in, wmax] [S€€ Figure 1(e)]. continuous-domain signals.
The sampling problem for this class of signals has beenln Section Il, we formulate the problem of sampling sig-
studied in [19]-[22]. Again, for a fixed set of spectral sugpo nals from a union of subspaces and provide a geometrical
these signals live in a subspace. With all possible spectiaderpretation. Section Ill presents general conditiomsif-
supports, the signal class can be characterized by a uniorveitible and stable sampling operators. We then study the
subspaces. sampling problem in two concrete settings: in Section 1V,
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we consider unions of finite-dimensional subspaces; and inGiven a class of sighals defined as a union of subspaces, it
Section V, we consider unions of infinite-dimensional shiftis attractive to find a fixed representation as in (7) for them.
invariant subspaces. Section VI concludes the paper wittesoThe natural questions to pursue are the following.
outlook. 1) When is each object € X' uniquely represented by its
sampling data{(z, 1)}, c2?

Il. PROBLEM FORMULATION 2) What is theminimum sampling requiremefdr a signal
classx?
i } ) ) What are theoptimal sampling function$v,, },, ., ?
The examples given in the previous section lead Us t04) what aresfficient algorithms to reconstruct a signalc

A. Framework: Linear Sampling from a Union of Subspaces

consider the following abstract definition for many claseés X from its sampling datd (z, 1)}, c2?
. . n *
signals of interest. _ . . _ 5) Howstable is the reconstruction the presence of noise
First, let ¥ be an ambient Hilbert spaten which our and model mismatch?

signals live. Some concrete casesHofinclude: in Examples Note that if X is a single vector spacé then frame
. . . N

2 and 3 for pleCQeW|se po_IynomlaI§,{ L L (D_)’ where theory (see, for example, [27, pp. 53-63]) precisely addresses

D=10,1] (o_r [0, 1]* for ZTD) Is the d(_)mam of spat|a! SUPPOrty o qe questions. In particular, one can reconstructzagysS

for overlapping echoes introduced in Example 5, if ;he pul§ﬁ a numerically stable way from its sampling dater —

shape¢(t) is square-integrable, we can chodqe= L*(R); h is af f

for signals with unknown spectral support in Example?6, {(@: ¥n) ep WhENEVEHYyn},,e, IS aframeot 5.

; o In this paper, we study and answer the first two questions
can be the space of all functions bandlimited to the larg&styineq above, which involve the feasibility and fundaraén
possible spectral spaAmin, Wmax)- '

erformance bounds of the proposed sampling framework. It
Definition 1 (Union of subspacesYhe signals of interest b ’ brop ping W

live | fixed uni f sub athat is defined is our hope that the results from this work, including the
V€ In a fixedunion of subspacemat 1S defined as geometrical viewpoint, stable sampling bounds, and mimimu

x=1]s, (5) sampling requirement as discussed below, can provide lusefu
insight and guidelines for the solutions of the remaining

. . guestions in future work.
whereS,, are subspaces 6% andl is an index set. In other

words, a signakz € X if and only if there is somey € T’ ) )
such thatr € S,, B. Geometrical Viewpoint
o

yel’

We consider a general sampling framework in which the In the Hilbert spacét, knowing{(z,v»)}, ., is equivalent,
input signalz € X is sampled via a bounddihear mapping up to a linear transformation, to knowing the projection
A into a sequence of number§Azx),}, .. We refer to Psz of z onto the subspac& = span{v,},.,. We call
{(Az),},c, assamplesof = via the sampling operatod. S a representation subspac€learly, {1}, ., provides an
From the Riesz representation theorem [26], there existdnaertible sampling operator foft if and only if there is a
unique set of vector& = {¢,,}, ., in H for any such linear one-to-one mapping betwedhs X' and X'.

mappingA so that Figure 2 illustrates a simple case, where the signal space
is R3. The set of signals of interest = |J;_, S; is the union

(Az)y = (2, 9n)n (6)  of three one-dimensional subspaces (three lines goingghro
and thus the origin). As shown in Figure 2, we projedt down to a
Az (@) ey - @) certain subspace (a plan§)and obtainPs X = Ule PsS;.

We can see that there is an invertible mapping betweemd
Thus, any bounded linear sampling operators uniquely PsX as long as no two subspacesﬁﬁi}le are projected
specified by the set ofampling vectorsl = {¢,,},.,. In onto the same line iS5 [see Figure 2(a)]. In this case, no
the form (6),, resembles the point spreading function oinformation is lost and we have a more compact representatio
the nth measurement device. A case of particular interest @§the original signals. Thus geometrically, we can thinkthef
when the sampling vectors are shifted versions of a commproposed linear sampling as projecting the set of signats @n
kernel function«; for example,v,(t) = ¢(t — nT) and lower dimensional representation space, while still preag
H = L2(R). In that case, the sampling procedure giveits information.
in (7) can be efficiently implemented by filtering followed The first problem is to study the lower bound of the
by uniform pointwise sampling, which is similar to (2) adimension of invertible representation subspaces, whgch i
in classical sampling. In various Fourier imaging systemsglated to the minimum sampling requirement. In the case of
including magnetic resonance imaging (MR{},, }nca are Figure 2, the lower bound is 2 (i.e. a plane), because there
complex exponential signals on a compact support. In comeuld always be information loss if we projectédonto any
puted tomography, inner products with),},.ca represent single line.
linear integrals. We notice that the representation subspaces that provide
invertible or one-to-one mapping are not unique. Although

1We could consider a more general framework where the amisigate in theory any of them can be used they are very different
is a vector space. However, we will restrict to the Hilbgrase setting as ’

it provides induced norms and is more familiar in the signescpssing N Practice. For some representation SUbSp.acesv the Fﬂdlef?
community. lines are so close to each other [e.g. consider a perturbatio
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Representation subspace

(@) (b)

Fig. 2. An example of a union of subspacés= U?:l S; and its projections onto lower dimensional representasiobspaces. (a) A case of invertible
and stable representation. (b) A case of noninvertibleesaprtation. Also, a representation subspace close torkisvould lead to unstable representation.

of Figure 2(b)] that sampling becomes very sensitive toaois Note that we use thé, norm for Az, — Axs Since it is a
and numerical error. So there is an issue in how to choosequence of numbers. We can see that stable sampling implies
the “optimal” representation subspace, or equivalently tlinvertible sampling, whereas the reverse is not true.
“optimal” sampling vectors. The stable sampling condition in (9) is defined in terms of
In the following sections, we will formulate and study thehe squared norm (i.e. energy) of the signals and their sampl
above geometrical intuitions in a rigorous and quantieatiwalues. However, when we work it = L?(R) and thus
way. all the signals are functions of a (time) variable, it is aofte
desirable to consider a more stringent pointwise stabdgy
discussed in [4]. This additional requirement is due to Hu f
that two signalsr; (t) andz(¢) can be close in thé? sense,
A. Definitions but still differ markedly in their pointwise values withirome

We now go back to the general sampling framework defindc@lized regions. _
in Section II-A, where the set of signals of interégtis given 10 bypass this problem, we can adopt the treatment in [4]

in (5) and the sampling operatot is given in (7). First, by restricting the ambient spade_to a (reproducing kernel)
we want to know whether each signal € X is uniquely SuPspace of.?(R) with the following property:
represented by its sampling dafa:. ) , ) S

Definition 2 (Invertible sampling)We call A aninvertible P z(t)]” < a /R|x(“)| du = o' ||z||z2(w), (10)
sampling operator fok’ if eachx € X is uniquely determined

by its sampling datadz; that means for every; andz, in for all z(t) € H, where0 < o/ < oo is some constant.
X, Examples of subspaces having the above property include the

®) space of bandlimited functions, and shift-invariant sgagih
the generating function satisfying some mild conditiong [4
In other words,A is a one-to-one mappingpetweenX and By linking (9) and (10), we get
AX.
The invertible (or one-to-one) condition allows us to
uniquely identify each: € X from Az. However, in practice,

1 H
stronger requirements are needed: we want to be ablef% some constand < o < co. In this case, the proposed

reconstructz € X in a numerically stableway from Az. stable sampling condition in (9) implies pointwise stapiks
To guarantee such an algorithm exists, we need to ens‘lﬁ‘{%"'
that if Az is “close” to Ay thenz is “close” to y as well.
Furthermore, we want that a small change in the signalB. Key Observation
only produces a small change in its sampling ddta These
requirements motivate the next condition on the sampliri@
operator.

Definition 3 (Stable sampling)We call A a stable sam-
pling operator forX if there exist constant8 < o < 8 < o
such that for every; € X,z € X,

IIl. CONDITIONS FORSAMPLING OPERATORS

Az, = Axo |mp||es r1 = T2.

sup |1 (1) — z2(t)]* < o [|Azy — Ax?”i(/\)’
teR

The main difficulty in dealing with unions of subspaces

that, in the last two definitionsy; and x> can be from

two different subspaces. In other words, the proposed eniqu

and stable sampling conditions are defined aroalinearset.

Consequently, we cannot directly apply various well-known

linear results in matrix and operator theories to study the
al|zy — zol|2, < ||Azy — A~’02||122(A) < Bllzy — 222, (9) proposed sampling _conditions. To overcome this problem, we

introduce the following subspaces:

We call « and 3 stability boundsand the tightest rato _

r = 3/« provides a measure of the stability of the sampling Sy0 =Sy + S (11)

operator. ={y:y=ux1+z2, Wherez; €S,, z2 € Sp}.
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Typically, g‘%g has simple interpretations. For instance: in Proposition 3: Suppose that : = — {(a:,d;@}szl is an
Example 1 with streams o Diracs,S, ¢ is a subspace of at invertible sampling operator fo&’. Then
most2 K Diracs with fixed location; in Example 2 of piecewise

A . . i : def S
polynomialsS, 4 is a subspace of piecewise polynomials with N > Npin = sup  dim(S, ). (14)
at most2K — 1 pieces; and so on. It is easy to see that the set (v.0)€lx

y def U gw) Proof: Suppose thatl is one-to-one ot’. From Proposi-

tion 1, A is one-to-one on every, 4, (v,0) € I'xT. It follows
(rfer=r thatdim(S, 4) = dim(A(S, ¢)). Since the range af is in an
={y:y =21, wherer, € X,zp € X}, (12) N-dimensional vector spacejm(A(S,,¢)) < N. Therefore,
consists of allsecantvectors of the set¥, which play a N > dim(S, ) for every(v,6), and, henceN > N,;,. B
fundamental role in the study of dimensionality reducti®8][ Proposition 3 provides a minimum sampling requirement
The next two propositions map the invertible and stablge. the minimum number of samples) fimear sampling It
conditions on theunion of subspacest = |J S, to those states that with a linear sampling scheme, one needs tonobtai
yer at leastV,;,, samples to provide an invertible representation
for signals fromX'.
Consider a simple application of Proposition 3 to Example 1

where X’ consists of streams o Diracs? In this casesS, ¢

for single subspaces.
Proposition 1: A linear sampling operatod is invertible
for X if and only if A is invertible for everyS, ¢ with (v,6)

I'xT. . o
% are subspaces of streams of Diracs with impulses at up to

Proof: Consider the "if" part, that is, assume thatis 2K fixed locations. Thus the minimum sampling requirement
-to- I'xT. : S
one-to-one on everg, g, (7,6) € I'xT'. Letxy, 2 be vectors S Nmin = 2K. This is also equal to the number of free

in X such thatdz; = Az,. From the definition ofX there . .
parameters for each signal iti.

%let ’;’nz froIllr’1 f#:r;rtzz—ittg-lor?eigsi2mitieﬁ %?:Sif;(’);fgwes The situation becom_es more interes_ting when we consider

thvét,:rl — 2,. HenceA is one-to-one o, e Example_2, where the signal clagsconsists of 1-p piecewise
Now consider the “only if” part, that is, assume thatis polynpmlal signals suppo.rted. oW, 1]. Every signal inX

one-to-one orY. Let yy, y» be vectors inS, o (v,0) €T xT contains at mosk’ polynom|_al pieces, each ofdegree_ I_ess than

such thatAy, — Ays 7Den0tez — _”?;2 Bécauseg d. We can see that every S|gnal_z?n can be fully specified by

. ‘ <o s 70 Kd+ K —1 free parameters, witlk — 1 parameters used to

is a subspace; € S, 5. From (12)’_ there _eX|_s¢1 € & and record the locations of the discontinuities aRd parameters

7y € & such thatz = 3 — z. Since A is linear, Ax; — specify the coefficients of th& polynomial pieces. But is

Az = Az = Ay, — Ay, = 0. It then follows from the one- ;s\ ericiant to use onlyKd + K — 1 linear measurements to

to-one assumption fo&” that z; = x5. This impliesz = 0, fully specify signals from?

or equivalentlyy; = y». Therefore,A is one-to-one on every The above question can be answered by applying Propo-

Syor (1,0) €T x L. . . B sition 3. First, we can check thas, , are subspaces of
Prqp03|t|or_1_2. A linear Samp'”.‘g operatoA is stable for piecewise polynomials with at moQt[?— 1 pieces, each of

X, with stability boundsx and 3, if and only if degree less thad. Thus from (14), the minimum sampling

allyllF, < 1Ayl < Bllylz (13) requirement forX is Ny, = (2K — 1)d. Contrary to what
~ one might expectN;y, Is strictly greater than the number of
for everyy € S, 9 and(y,6) € I' x I. free parametersid + K — 1 whend > 1. Thus, as a novel
Proof: Starting from the stable sampling condition &f gppjication of our minimum sampling bound, we have shown
given in (9) and using (12) we have that the sampling algorithm proposed in [12] for piecewise

polynomials, which effectively converts the input signatioi a
stream of Diracs by repeated differentiation, indeed adse
the minimum sampling requiremen,;, = (2K — 1)d.

allzy — 2ol|F, < ||Azy — Amslf7, < Bllzr — 223
= allyl < 1Ayll7, < BllyliF,  foreveryye X
= allylz, < 1Ayll7, < Byl

for everyy € S, 5 and(v,6) € T x I. B B. Invertible Conditions on Sampling Vectors

Recall that a linear sampling operator is specified by a set
_ _ . S of sampling vectorsl = {¢,},., as defined in (7). We now
In this section we consider the situation where the subspag@, dy the invertible and stable sampling conditionslarLet

spaceH can be infinite-dimensional and the index §etan a

be infinite.

IV. UNION OF FINITE-DIMENSIONAL SUBSPACES

2Technically, streams of Diracs do not belong to a Hilbericepas required
in our framework; rather, these generalized functions kEhde treated as
. . . linear functionals on the space of continuous test funstiddowever, we
A. Minimum Sampllng Requirement can verify that Propositions 1, 3, and 4 hold without changelen this

Using Proposition 1, we immediately obtain the followmore general setup. The only difference is that, insteacpfesenting inner

. S l . f . £ fini products in Hilbert spaces, the notati¢n, ,,) should now be understood as
Ing minimum sampling requirement tor union o Inlte'the pairing between the linear functional(such as Diracs) with its argument

dimensional subspaces. Un.
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Then eachr € S has the basis expansion C. Application to Finite Rate of Innovation Sampling

K To see applications of the results so far, first let's revisit
= ch¢k_ (15) Example 1, where the union of subspac#s consists of

k=1 streams ofK Diracs and provides the basic signal model for
finite rate of innovation sampling [12]}\—4[14]. In this casech

It follows that subspaceg‘%g has a basigd(t — tx)},_; with t; < 13 <

K ... < ty,andM < 2K.We have already shown the minimum
(Az), = (z,¢n) = Z%(%Jﬂﬁ sampling requirement i8K. Since(§(t —to), ¥ (t)) = ¥ (to),
k=1 it follows from Proposition 4 that a minimum sampling vector

set¥ = {wn}ff; provides an invertible sampling for streams

Thus, we can expresdz via a matrix-vector multiplication i i _
of K Diracs if and only if

Az =Gave, (16) Pi(t)  a(te) - Yi(ter)
whereG's, g is the (generalized) Gram matrix between the sets ;. Yats)  Walte) - ¥a(tex) £0,  (20)
of vectors® = {¢y}r_, and ¥ = {¢, }2_: : : : ’
Yarc (t1)  ox(te) -+ vor(tar)
(p1,91)  (d2,¢1) - (DK, 1)
def (b1,2) (b, ba) -+ {dK,a) for everyt; <its < ... < taxk. .
Goyw = : : . : ,» (17)  The set of functionsl = {v,,}>", satisfying the above
: : : condition (20) is called & chebycheff systef30]. The clas-
(P1,9n) (P2,0n) - {dK,¥N) sical example of a Tchebycheff system is the power functions
R . -
ande = (c1, ..., cx)7 is the column vector of coefficients in%» =" > n=1,2,...,2K. In this case, the matrix in (20)
) . o ) (o)) Ko .18 the familiar Vandermonde matrix. Tchebycheff systenagy pl
the basis expansion of Similarly, if . o = { p }k:1 IS a prominent role in several areas of mathematics such as ap-

a basis forgw, then fory ¢ 5‘%0, we can expressly via a proximation, interpolation, and numerical analysis. Nuoos
matrix-vector multiplication as in (16) with the Gram matri examples of Tchebycheff systems are given in [30], inclgdin
Gs. ,v. Hence, the invertible sampling condition of in power functions, Gauss kernels, spline polynomisis,and
Proposition 1 is translated into the (left) invertible caimh cos functions, and derived systems from these examples (for

on Gram matrice€3s_ , v, as follows. instance, if{q/;n(t)}f:[:l is a Tchebycheff system ang(t) is
Proposition 4: Let ¥ = {¢,}"_, be a set of sampling & Positive and continuous function, thgm ()¢ ()}, is

(e e ) ~ also a Tchebycheff system). The particular choices of sam-
vectors andby g = | ¢, }k:1 be a basis o5, 9. Then¥ pling functions used in the finite rate of innovation samglin
provides an invertible sampling operator far if and only if |iterature [12], [14] are of course among these examples.
Go, ,v has full column rank for everyy, ) € F}? L. The above discussion also applies to the signals of over-

Furthermore, if we supposé. y = {Qf’/(:’e)} ™ s an Iap}ging echoes in _Example_ 5. Note that samplh?(q) =
k=1 > ko1 Ck (t —ty) with sampling functiong+,,(t)} is equiv-
alent to sampling a stream of Dira§s:kK:1 e 0(t — tx) with

sampling functions{zﬁn(t)}, where, (1) = (¢(- — t), ¥n).
o2 (Q) |3 < |G| <02, (G)le|3,  (18) Thus the invertible sampling condition described in (20) ca
be used in the case of overlapping echoes as well.
for everye, whereo,in(G) andop,.x(G) are the smallest and
largest singular values @, respectively. Moreover?2, (G) o )
ando?, (@) provide the tightest bounds for the inequalitie®- Application to Compressed Sensing
of the type in (18). Hence, the stable sampling condition of |n the compressed sensing setup [23]-[25], the signals of
A in Proposition 2 is translated into the classical conditign interest are supposed to have sparse representation, wsing

orthonormalbasis forgmg, then||y|lx = |lcl|2- From matrix
theory [29], we know that

requirements on Gram matric€se_ ,,v. to K terms from an orthonormal basfgy} as in Example 4;
Proposition 5: Let ¥ = {wn}ﬁj:l be a set of sampling i.e.,
K
_ [ (o1 m? ;
vect(jrs and®, g = { % }k—l be an orthonormal basis X = {I - chd)k’ 1| < K},
for S,¢. Then¥ provides a stable sampling operator fr kel

if and only if where[ is an index set and/| denotes its cardinality.

def . 2 Let ¥ = {wn}N, be a set of sampling vectors. For
= f i , 7 n=1 ,
0<a (y,el)rérxram‘“(Gq”'e’q’) (19) each¢y, in the dictionary{¢y;},, consider the column vector
def 2 g = (<¢k7¢1>7<¢ka¢2>7"'3<¢ka¢N>)T’ and consider the
<B= ) . i .
<0 (mﬁgﬁxpamax(Gq’%ﬂ"l’) <0 matrix G = (g,)r obtained by concatenating all of these

_ _. columns. Then the problem of reconstructinge X from
And o and 3 are the tightest stability bounds. its sampling datadz = d is equivalent to solving: from the
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matrix equationGe = d under the constraint that has at Proposition 6 (Existence of Invertible Sampling Operalors

most K non-zero entries. B Suppose tha’ = |J S, is a countableunion of subspaces
Note that in this case, each subsp&ce has an orthonor-

mal basis of the form®, » = {én},, with [I| < 2K.

Therefore, the Gram matriGs_ , v is formed by taking . . . . nin=1 .

subsets of the columns 6f asG; — (g, )res With |T] < 2K. pr]%w.des an invertible sampling operator fat} is dense in

. . . . H min
Hence, applying Proposition 5, we can write the stability
bounds in this case as

~el’
of H, and suppose thalV,,;, as defined in (14) is finite.
Then the collection of sampling vectof® = {1, } V™ . ¥

Proof: Consider the following function that is defined for
each(v,0) € T' x T as the determinant of the Gram matrix in

a= mh:ng Amin(G3G1), - (17); i.e.
_ ) * def
B \]S\IZIIQ)K )\mdx(GIGI)a fq"v,e (wla .. ,wNmm) = det(G@%%\pL (24)
whereGj is the conjugate transpose 6f, and Awin(-) and where @, = {gy"”}¥mn is some basis forS,, (if

Amax(-) denote the_ _minimum and _maxi_mum eigenvalaesdim(gw) < Npin then we augment its basis to a set\f,i,
Note that the stability bounds derived in (21) are closelhearly independent vectors). From Propositioni4provides
related to the notion ofestricted isometryn [31]. By noting  an invertible sampling operator o, o (V1. UN) 7 0
that the entries ofz7G; are (g;,g;), k.l € I, and using for every(v,0) €T x I. '

the GerSgorin disc theorem [29, pp. 344 - 345] to bound thepe 1o the continuity of the inner products and the conti-

eigenvalues of these matrices, we obtain nuity of determinant with respect to matrix entrief,, , is
continuous or{Vn . Define the set
az inf (91 9) — Z|<gkagl>|> def
‘I‘:2K_17 kg[ < lel (22) O(P'y,e :e {(1/111 s ’wNmin) : f‘P»y,e (1/117 tet 7¢Nmin) # O}
= quwl’e ((—00,0) U (0, +00)) . (25)

B < sup <<gkagk>+2|<gkagl>|> :

F[=2K—1, ke T = Since the sef—o0,0) U (0, 400) is open andf is continu-

Therefore, for stable sampling, the conditioh< oo is 0US,0s. , is open inH ==, As shown in the appendiQs_ |,
always satisfied; we only need to ensure> 0. Without is also a dense set. Now the set of invertible sampling vector
loss of generality, we can suppose the column&ao have O = [ Os_, is acountable intersection of dense open

. L o . . (v,0)er'xT
Flunrlltct?;:?%hl;.&Z,Fggd;cirllédUisr:n[gzt]h:Scumulatlve coherence sets in the complete metric spakg=i». Hence, by the Baire
theorem [34],0 is dense infHNmin, [
w1 (m) L sup Z|<gk,gl>|, As a nice application of this result, consider Example 4
Hl=m, k¢ o7 of sparse representations. Supp@sds a separable Hilbert

o i
we see from (22) tha#l is a stable sampling operator in thisoPace and lewk}k:l be a countable ba_5|s for. T_hen '_[he
case if set X of all possible K-term representations as given in (4)
using this basis constitutes a countable union of subspaces
of dimensionK in H. On the one hand, from Proposition 3,
: def an invertible sampling operator requires at leakt sampling

It is easy to see tha < , Where = " )

y fulm) < mp s vectors. On the other hand, from Proposition 6, the cobecti

supy._.|(gx, g;)| is called thecoherenceparameter [33]. These 2K v . )
coherence measures play a fundamental role in the compres%fezK vecjtor sets{yn},,—; that provide invertible sampling
operators is dense.

sensing literature. In comparison with (23), the sharpesil-a ’ ) ) ) )
Existence results on invertible sampling operators of this

able result in [32] shows under the stricter requirement ) ] ’
type were shown in the compressed sensing literature [23]-
wm(K—1)+wm((K) <1 [25], but only forfinite unions of finite dimensional subspaces

and with extralog and constant factors on the number of

that two efficient algorithms, Basis Pursuit and Orthogongly,jireq sampling vectors. However, our result here dogs no
Matching Pursuit, can reconstruéf-sparse signals exactlyimmy stable sampling.

from its sampling data.

m(2K —1) < 1. (23)

Note that Proposition 6 does not cover the case in Example 1
with streams ofK Diracs, in which the index set = R¥ is
E. Existence of Invertible Minimum Sampling Sets not countable. As discussed in Section IV-C, only Tchebffche
In the case wheret = |J S, is a union ofcountable systems lead to invertible sampling operators.
subspaces, the following prwoeprosition shows that the minimu
sampling requirement is achieved by a dense set of sampling V- UNION OF SHIFT-INVARIANT SUBSPACES

vectors. In this section, we consider the case where the ambient

— 72 i i i
3We have used the following equalitiesiy,in(G*G) = o2, (G) and spaceH = L*(R) and the sett’ of signals of interest is a

Amax(G*G) = 02, (G). union of infinite-dimensional shift-invariant subspaces.
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A. Shift-Invariant Subspaces U1 (—t) / o d1m
A finitely-generated shift-invariant subspace Ii#(R) is
defined as [35]

K
Sp = {x(t) = Z Z ChmPk(t —mT) :c€ lg} , (26)

k=1me€Z

z(t) o . .

wN(_t) —" —e dNJn

where® = {gbk}kK:l is called the set of generating functions
of Sg, andc = {Ck,m}lngK, mez is called the coefficient Fig. 3. Multi-channel sampling. The input signalt) is first filtered by a
set ofz(t). For expositional simplicity, we will SeT" = 1 by  pank of N filters, {W}N , and then the sampling data are taken at
rescaling the time axis. time instancesn € Z. n=t
To make the representation in (26) stable and unam-
biguous, we require that the family of functioqy (¢t —
m)}1<k<k, mez fOrm a Riesz basis afs [35], [36], [3]. This sample signals from” by a sampling operatot characterized
means that there must exist positive constantsas < 3o < DYy a set of sampling vectorg),, },ex-
oo such that We consider the case where the set of sampling vectors
K 2 takes the form of v, (t — m)}lgng&mez(. In thi; case, the
_ 2 sampling procedure of computinge, ¥, (- — m)) can be
;mZGZCk,mM(t m) < Baleli,, efficiently implemented by a bank of filtering followed by
(27) uniform pointwise sampling, as illustrated in Figure 3.
for all ¢ € o, where |2, = YK Y ezlcrm|? is the Specifically, by denoting, (t) = ¢»(—t) we can express
squared,-norm of c. Note that this requirement implies anyth® sampling data as
functionz(t) € S¢ has finite energy and is uniquely and stably def
determine(d) by its coefficienis dnm = (@, on (- = m)) = (5 &) (m). (30)
Analogous to thedimensionof a finite-dimensional sub- |n other Words'{dmm}mez is the uniform sampling of the
space, théengthof a shift-invariant subspacg is defined to function (z ¢, )(t) in the classical sense. Applying the classi-
be the cardinality of the smallest generating set $0f35]; cal sampling formula in the Fourier domain (as obtained from

aglle|f, <

L2(R)

i.e., the Poisson summation formula), we can write the discrete-
. . def
len(S) def o8 time Fourier transform of the sequendg = {dmm}mez as
min {K : § can be generated b{/qsk}kK:l} : A (w) def Z dp.me 4™

mEeEZ

For example, for the spac&s given in (26), we have . ~

len(Sp) = K if the generating function$¢k}%:1 satisfy the - X:Zx(w +2mm) &n(w + 2mm). (31)
me

Riesz basis condition in (27).
A common approach to studying shift-invariant subspacesTherefore, ifz(t) € S and is defined as in (26), then

is to consider the Fourier domain [35], [36], [10]. Takingth substituting (29) into (31), and noting th@g(w) - Jn(w)

Fourier transform of:(¢) in (26) and exchanging the order OfandEk(w) is a 27-periodic function, we obtain

integrations, we have

K _
K oo _ dp (W) = @ w—|—27rmg/b\ w—+ 2mm {D\nw—i-%rm
(w) = Z Z / Chym O (t —m) e 7¥hdt @) ;mze:z k( ) i ( ) ¥n( )
k=1mez”’ — K ~ _
—~ = + 27 n(w =+ 27 c .
=3 B@ B, 29) > <mzz T m)> o

(32)

k=1
where@k(w) ger ffooo or(t)e=I@tdt is the Fourier transform  This leads to a compact relation between the sam-
. . . . . def . . def
of ¢r(t) and ¢y (w) def S ckme 7™ is the discrete-time Pling datad = {dnm}i<n<n mez @nd coefficientse =

Fourier transform of the sequeneg = {cm},,cp Using {Ckm}icick mez OF #(t) € Se via a matrix-vector mul-
(29), one can derive an equivalent Riesz basis requirementiplication in the Fourier domain

the Fourier domain. We refer to [36], [10] for details. a(w) = Gou(w)ew) (33)
B. Sampling Signals from a Union of Shift-Invariant Subwhere 2(w) £ (@ (w),&(W),....exw))T and
spaces d(w) oef (di(w),d2(w),...,dn(w))T are column vectors, and

Now we consider the class of signals that can be model€&, v (w) is an N x K matrix with entries
asX = | Ss., where each subspacs _, is a shift-invariant ~ —_—
ver o T G w(w)}, & &ef Z ok (w + 2mm) Y, (w + 2mm).  (34)
subspace generated by a finite set of functibnsWe want to ’ el
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Note that (33)-(34) closely resemble (16)-(17), and thus vaince, analogous to [36, Theorem 4.1] on the existence and
can considerGs w(w) as the Fourier-domain Gram matrixconstruction of the dual basis, we can always orthogonalize
between two sets of generating functiofs= {¢k(t)}kK:1 a set of generating functions for a shift-invariant subspiac

and ¥ = {¢,,(t)})_,. obtain an orthonormal basis for |t
Proposition 9: Let ¥ = {1/)"} , be a set of sampling
$e v.0
C. Sampling Conditions for Union of Shift-Invariant Subfunctions and®., o = { % 9)}k_1 be a set of gener-
spaces ating functions of an orthonormal basis fd, . Then
Using the results from Section Il we can derive thgy,(-—m)}, ., «n ez Provides a stable sampling operator

sampling conditions for a union of shift-invariant subspsc for ¥ = |J Ss, if and only if

X = |J Ss, by considering subspac&% def S, + Sa,. ver
yer def o 2
Clearly, ‘S;TBQ irs1 also af?hift-ipvariant sugspace that can be! <@ = (%9)65;}}22[_m”min(G%w(W) (36)
generated by the set of functiods, U ®y. Denote®, y as a def o 9
set of generating functions for a Riesz basis3gr ,. Thus, it <g= €SS sup Ormax(Ga o w(w)) <oo. (37)

(v,0)€r T, we[—m,7]
follows from the definition in (28) thaf®., 4| = Ien(&p 0) <

len(Sa, )+1en(Ss, ) = [@,[+|Pq|. Applying the relation given

in (33), we can expresd y for y € S.:p%e via a matrix-vector

multiplication in the Fourier domain with the Gram matri

Go, ,w(w) of size N x len(Se, ,). of vectors{qsg]’@)(. — m)} is an orthonormal
Proposition 7: Suppose that the mapping : =z LSkSHy,0, mEZ

. . X . basis 0fS, g, i = |lelli,-
{(z,%n(- —=m)) } << N mez 1S @ninvertible sampling oper- Ll . 2
ator for ¥ = |J Sy . Then Using the Parseval equality, we have

And o and 3 are the tightest stability bounds.
Proof: Suppose thaty € 8%9 and ¢ =
x{ck-rm}lSkSKw,ey mez 1S the coefficients ofy. Since the set

yel Ky 1 Koo
. 2 2 _ - -~ 2
N Nuwe sp lenGe.). @ = Yledh =53 [ et
(7,0)eT'xT ' k=1 ) k=1 (38)

Proof: From Proposition 1A is an invertible sampling ¢ (w)e(w)dw,
operator fort” if and only if A is one-to-one on ever§s_,,

(v,0) € I' x I'. Hence, from the matrix-vector representatiowherea( ) def (@ (w), (W), . ...exk. , ()T and " (w) is
given in (33), the invertible sampling condition is equ&aito e conjugate transpose dfw). Simirérly, for sampling data

T2

the Gram matrixGs, ,,w(w) having full column rank, which Ay =d = {dnm},cpcn. mez We have
implies thatN > |®,, 9| = Ien(é‘q> ,) forevery(v,0) € I'xT".
|
d||7 = — dw.
Proposition 7 provides an easy-to-compute minimum sam- Il /

pling requirementV,,;,,, interpreted as the minimum number
of channels in the multi-channel sampling illustrated ig-Fi
ure 3, or equivalently the minimum number of samples p
unit of time, for a union of shift-invariant subspaces. Ugin ;2 (G, L u (W) e (w)e(w) < Zi*(w)a(w)
the same reasoning leading to Proposition 7, we can obtain o 2 ko

the following condition for invertible sampling, whose pffo < Onax (G o0 (@) € (W) Ew).

Since d(w) = Gs, , v(w)c(w), we know from matrix
g;]eory that for (almost) every,

is omitted due to similarity. Therefore,
Proposition 8:Let ¥ = {¢,}._, be a set of sam-
K., 2 2
pling functions and®,, = {gb(%e)}k " be a set of <we§[5_lwn£] Tnin(Ga, o0 (w ))> llellz, < Iz,
=1
generating functions of a Riesz basis fd, . Then ) )
{¥n(- —m)} ,ic N mez Provides an invertible sampling op- < | esssup 05, (Ga, 5w (W) | el
erator for& =" J Se,, if and only if for any choice of wel=mm]
p ﬁer ding G . And the bounds are tight. Combining these bounds for all
(v,0) € ' x T, the corresponding Gram matr&s, ,,v(w) (v,6) € T x T and using Proposition 2, we obtain the desired
has full column rank for aimo$teveryw. result -

Next we will derive stability conditions for sampling.

For simplicity, similar to Proposition 5, we suppose that
{ ,(J 9)( —m) is an orthonormal basis for Da| Case Study: Spectrum-Blind Sampling of Multiband Sig-

1<k<K. g, meZ

S, ,. This assumption is made without loss of generality, 15 gemonstrate the proposed theory of sampling signals

. from a union of shift-invariant subspaces, we will reviséré

This technicality is due to the fact that, for some genegatimctions®., o h bl d ibed i | h h . | f
and sampling function¥, the corresponding Gram matr@q, 0,7 (w) may t € problem eS.C” € _'n Exampe 6, where the signals o
not have well-defined pointwise values on a set of measure zer interest are multiband signals with unknown spectral suppo
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Our discussions differ in style as well as in technical dstaiform a Tchebycheff system on the interVal,in, wmax], i-€.,
from some of the original results of Breslet al. [20]-[22],

who first proposed and studied the spectrum-blind sampling Y1 (w1) Y1 (w2) -+ Y1 (wak)

and reconstruction of these multiband signals. dot Yo(wi)  Yo(w2) - Pa(wak) L0, (40)
As shown in Figure 1(e), we partition the spectral sfgas : : : ’

[Wmin, Wmax] iNto L equally spaced spectral cell§; }=='. For {/J\ZK(WI) %K(w) %K(sz)

simplicity of exposition, we Seb.x — wmin = 27 L (after _

rescaling the time axis); each cell can then be specified fg§ all choices ofuyin < w1 <wz <... <wak < wmax.

Ci = [Wmin+27i, Wmin+27(i+1)]. The signals to be sampled _Proof: First, we subs_tltute (39) into (34), and write the
have nonzero frequency values in at mdstspectral cells entries of the Gram matrix as

(with K < L), though we do not know the exact locations of {G%,eﬁP(w)}n,k

these cells. _ (a1)
Clearly, the signals of interest form a union of subspaces, = Z Ie,, (W + 2mm) Yp(w + 27m),
and can be written as meZ
whereg;, is the index of thekth cell in 7,4, and1 < k <
xMB) _ U SBL) 2K. Since (41) represents ar-periodic function, we only
B Frv o dt luate its values in one period. On the intevval
ver need to evalu p .
[wmina Wmin + 277]1 we have
def _
wherey = {a1,42,- -, qx : 0 < qx < L} represents a set of Le, (w+ 2mm) = 1 whenm = g, (42)
indices, specifying a possible choice &f, out of L, spectral k 0 whenm # g,
. - def . . . _
cells; 7, = qugWqu is the finite union of thesé( cells; and and thus
(BL) . . . .. —_
Sy, is the subspace of all continuous functions bandlimited {G<I>%97“P(w)}n,k — W + 27qp),

to F,.
To apply the results in Section V-C, we consider the sulfer 1 < n,k < 2K. Consequently, the condition in (40)

spaceSr, , = Sy +8W), which consists of all continuous Simply implies that the Gram matri€'s, , v (w) always has

functions bandlimited toF, , = F., U Fp. Let ¢;(t) represent full column rank.

the function whose Fourier transform is the indicator fisret ~ Next, denote, 4(w) = 07,;,(Ga, , w(w)) and 3, o(w) =

le, (w) of theith cell, i.e., 0rax(Ga 4 w(w)). For any fixed(y,6), we know from the
full rank property of Gg. , v(w) that 0 < a,p(w) <
~ By6(w) < oo for all w € [Wmin,wmin + 27]. Since both

di(w) =1¢,(w), 0<i<L. (39)

a4,9(w) and B, ¢(w) are continuous functions ab (due to
the assumption that ¢, (w) ; are continuous functions on

We can then verify that the shift-invariant subspabe , has  [w,,i,, wmax]), We can further conclude that there exist g

an orthonormal basi§pg, (- — M)}, .. mez WhereYUl = and g, 4 (independent ofv) such that) < a9 < o (w) <
{a1, 42, ..., qu} are the indices of thel/ different cells in 3 ,(w) < 3,4 < oo for all w on the finite and closed interval
Fyue- Since letSz, ,) = M = [yU 0| < |y[+10] = 2K [wpin, wmin+27]. Moreover, since there is onlyfmite number
with equality whery and ¢ are disjoint, it follows from the of choices for(v, §) (corresponding to all possible configura-
minimum sampling requirement in Proposition 7 that we neeibns of choosing up t@K cells out of L cells), we can find

at least Vi, = 2K samples per unit of time to determineconstantsy, 3 such that) < o < Qy0 < By < B < oo for
uniquely all signals fromt*5) from their sampling data. all (y,6), which implies the conditions in (36) and (37) for
This is twice the rate we would need if we possessed prigtable sampling. [ |
knowledge about the frequency support. However, this min-|n the following, we give two concrete examples of the sam-

imum sampling rate can still be much more efficient thapling functions{y,,}>%, that satisfy the conditions required
the Nyquist rate, which is based on the entire bandwidii Proposition 10. The first is to consider

Wmax — Wmin = 27L and, therefore, required (> 2K) N .
samples per unit of time. Ypw)=e7 T “1lr(w), 1<n<2K, (43)

Next, we will show that the above minimum Samp"n%here]lf(w)
rate can be achieved, i.e., there exist suitable choiced<of

sampling functions{wn}ff:(1 providing stable sampling for
x(MB)

is the indicator function of the spectral sp&n

It is easy to verify (from the property of the Vandermonde

matrix) that the determinant of the matrix in (40) is always

different from zero. Since any function(t) from X(M5)
Proposition 10: The sampling processA : = +— s bandlimited withinF, we can obtain from (30) that the

{z, ¥n(- = m))} < <ok, mez 1S @ stablesampling operator resulting sampling data can be written as

for the multiband signalsy(M5) jf tthFourier transforms of 01

the sampling function® = {@n(w)} are continuous and dnm = (m +— ) ; (44)

n=1
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for 1 < n < N andm € Z. This becomes exactly unions of finite-dimensional subspaces, we derived nepessa
the original sampling scheme proposed in [20], where tland sufficient conditions for such sampling operators tgtexi
sampling data are obtained by directly taking the pointwisand found the minimum sampling requirement. Next, we
values of the input signal on a periodic nonuniform patterextended all the results to the case of unions of infinite-
Uy, Usnez(m + 21). dimensional shift-invariant subspaces.

In the second example, we propose a new sampling schem&he proposed sampling framework for unions of subspaces
that has not been considered in the previous work [20]-[22as close ties to the prior work of finite rate of innova-
Let the sampling functions be Gaussian kernels defined én ton sampling, compressed sensing/compressive sampliray,
Fourier domain) as spectrum-blind sampling, in which new results and deroradi

~ 2,2 were discovered. It is our hope that the proposed framework

Yn(w) =e™ MTL 1S <2K, (45) can serve as a common ground and facilitate the interplay
for some constantr > 0. In this case, the matrix in (40) between the above three lines of thinking. Moreover, the
becomes a (generalized) Vandermonde matrix, whose elemé@¢a of modeling signals as coming from unions of sub-
fSpaces provides a useful geometrical viewpoint for finite ra
of innovation sampling and suggests a path for extending
the current compressed sensing/compressive sampling work
from discrete and finite dimensional cases to continuous and

Winite-dimensional cases (e.g. by considering uniondt-s

invariant subspaces).

{eﬂi/az}% are always distinct for arbitrary choice o
Wiin < wlk_<1 wy < ... < wag < wWmax, @S long as we
assume wy,;, > 0. It then follows from Proposition 10 that
the proposed sampling vectors given in (45) can also provi
stable sampling for the multiband signals.

The sampling data in this case aréd, ,, =
(z(t) * ¥n(t)) (m), where the spatial domain sampling

functions arei,(t) = e *'o°/(4n) /52 /(4nw). Compared APPENDIX
with the previous sampling scheme shown in (44), the We will show that for a linearly independent set of vectors
proposed new scheme differs in two ways: first, instead d:Ef{qbl,¢2, ..., on}, the setOg defined in (25) is dense in

of directly taking pointwise values, the sampling data afk’y. Geometrically, this means that, given aAidimensional
now obtained by averaging the input signals with Gaussianbspace, the set d&f-dimensional subspaces onto which the
kernels; second, all the sampling data in the new scheme #remer subspace can be projected without losing dimensions
taken at the same sampling instances (ixec Z) without a is dense.

timing shift. The latter property can be desirable in p@ti  Suppose thaf (i:ef {1,%2,...,¥N} ¢ Op. We will show
implementations, since it eliminates the need to carefultijat there exists & € Oy that is arbitrarily close tol. For
control the timing offsets between different sampling ¢sse the Gram matrixGs v as defined in (17), its singular value
which was required in the periodic nonuniform samplingecomposition has the form

procedure in (44). .

Finally, we would like to point out that the class of stable Gow =UAV",
sampling vectors for the multiband signals are not limited twhereUU andV are two unitary matrices, andl is a diagonal
the two choices given in (43) and (45). As we have showRatrix with real anchon-negativeentries. We can always find
in Proposition 10, a set o2K sampling functions provide another diagonal matriA, such that for alke > 0, A + Ao
stable sampling fort (™ 5) if their Fourier transforms are js a diagonal matrix with real angositiveentries.
continuous and form a Tchebycheff system on the interval Since {%}ﬁle is a linearly independent set, it is
w € [Wmin,Wmax]. The two particular choices in (43) andeasy to verify thatGg o is invertible. Let ¥ = ¥ +

(45) are just special cases of the Tchebycheff systems,h/vthsz*G;@ ®. Because the Gram matrix is linear with
contain many other possibilities as mentioned in Sectic@IV respect to its constituent sets of vectors, we have

This generalization about suitable sampling functionsnspe
door to greater flexibilities in the design of the sampling7e 3 = Ga.w + aUA2V G 4G o = U(A +aAy)V*.

systems. . . ~
Thus, by constructionlet(G, ) # 0, which means¥ e

VI. CONCLUSIONS Og. Sincea can be arbitrarily small, we are done.

We proposed a new sampling problem where the signals of
interest live on a union of subspaces. The first two questions
outlined in Section 1I-A were addressed in this work, which The authors would like to thank R. Laugesen, L. Jacques,
involve the feasibility and performance bounds of the pegab and anonymous reviewers for their helpful comments and
sampling framework. The key geometrical viewpoint was t84ggestions.
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