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A Theory for Sampling Signals from
a Union of Subspaces

Yue M. Lu and Minh N. Do

Abstract—One of the fundamental assumptions in traditional
sampling theorems is that the signals to be sampled come from
a single vector space (e.g. bandlimited functions). However, in
many cases of practical interest the sampled signals actually live
in a union of subspaces. Examples include piecewise polynomials,
sparse representations, nonuniform splines, signals withunknown
spectral support, overlapping echoes with unknown delay and
amplitude, and so on. For these signals, traditional sampling
schemes based on the single subspace assumption can be either
inapplicable or highly inefficient. In this paper, we study a
general sampling framework where sampled signals come from
a known union of subspaces and the sampling operator is
linear. Geometrically, the sampling operator can be viewedas
projecting sampled signals into a lower dimensional space,while
still preserving all the information. We derive necessary and
sufficient conditions for invertible and stable sampling operators
in this framework and show that these conditions are applicable
in many cases. Furthermore, we find the minimum sampling
requirements for several classes of signals, which indicates the
power of the framework. The results in this paper can serve as
a guideline for designing new algorithms for many applications
in signal processing and inverse problems.

Index Terms—sampling, signal representations, union of sub-
spaces, linear operators, projections, invertible, stable, shift-
invariant spaces.

I. I NTRODUCTION

Sampling is a corner stone of signal processing because
it allows real-life signals in the continuous-domain to be
acquired, represented, and processed in the discrete-domain
(e.g. by computers). One of the fundamental assumptions in
traditional sampling theorems [1]–[4] is that the signals to be
sampled come from a single vector space (e.g. bandlimited
functions). For example, the classical Kotelnikov-Shannon-
Whittaker sampling theorem can be presented as follow [3].
Denote sincT (t) = sin(πt/T )

πt/T ; then{sincT (t− nT )}n∈Z
is an

orthogonal basis for the spaceS(BL)
T of bandlimited functions

whose Fourier transforms are supported within[−π/T, π/T ].
Specifically, for allx ∈ S

(BL)
T , we have

x(t) =
∞∑

n=−∞

x(nT ) sincT (t− nT ), (1)
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and

x(nT ) =

(
x ∗

sincT
T

)
(nT ). (2)

=〈x,
sincT (· − nT )

T
〉L2(R) (3)

Equation (1) shows that any bandlimited signalx(t) ∈

S
(BL)
T is uniquely represented by its samples{x(nT )}n∈Z

and provides a way to reconstructx(t) from these samples.
Equation (2) corresponds to the practice of passing the signal
x(t) through an anti-aliasing filter before taking samples.

From this viewpoint, the Kotelnikov-Shannon-Whittaker
sampling theorem has been generalized by considering other
signal spacesS and other sampling functions (see, for ex-
ample, [3]–[11] and the references therein). In all of these
previous studies, the signals to be sampled are assumed to
come from a single vector space. However, as we will illustrate
with the following examples, in many situations the signalsof
interest actually live in aunion of subspaces.

Example 1 (Stream of Diracs):The stream of Diracs is the
basic signal model for the recent sampling framework for
signals withfinite rate of innovation[12]–[14]. As illustrated
in Figure 1(a), a stream ofK Diracs has the formx(t) =∑K

k=1 ck δ(t − tk), where {tk}
K
k=1 are unknown locations

and {ck}
K
k=1 are unknown weights. We see that once the

K locations are fixed, the signals live in aK dimensional
subspace. Thus, the set of all streams ofK Diracs is a union
of K-dimensional subspaces.

Example 2 (Piecewise polynomials):Many transient sig-
nals in practice can be modeled by piecewise polynomials
[see Figure 1(b)]. LetX (PP )

K denote the set of all signals
consisting ofK pieces of polynomials supported on[0, 1],
where each piece is of degree less thand. We cannot ensure
the sum of any two signals inX (PP )

K still has onlyK pieces
of polynomials, and thusX (PP )

K is not a vector subspace.
However, it is easy to verify that we do have a subspace once
we fix the locations of the discontinuities. Therefore,X

(PP )
K

is the union of the subspaces corresponding to all possible
discontinuity locations.

Example 3 (2-D Piecewise Polynomials):Consider 2-D
piecewise polynomials ofK pieces supported on[0, 1]2,
as shown in Figure 1(c). More specifically, each piece is
a bivariate polynomial of degree less thand. This kind of
signal can be seen as a “cartoon” model for natural images,
since natural scenes are often made up from several objects
of smooth surfaces with smooth boundaries. Again, it is easy
to see that once we fix the boundaries, the signals lie on a
subspace of dimensionKd2. With all possible boundaries,
2-D piecewise polynomials live in a union of subspaces.
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Fig. 1. Several examples in which the signals of interest come from a union of
subspaces. (a) A stream of Diracs with unknown locations andweights. (b) A
1-D piecewise polynomial signal with unknown discontinuity locations. (c) A
2-D piecewise polynomial with unknown boundaries. (d) An overlapping echo
(shown in solid lines) that is a linear combination of three pulses (shown in
dashed lines) with unknown delays and amplitudes. (e) A multiband signal in
frequency with unknown spectral support that only occupiesa known fraction
of the spectral band[ωmin, ωmax].

Example 4 (Sparse representation):Sparse representation
lies at the heart of modern signal compression and denoising
[15], [16]. In these applications, the final output signal isaK-
term representation using a fixed basis or dictionary{φk}

∞
k=1

(e.g. a Fourier or wavelets basis), written as

f̂K =
∑

k∈I

ckφk, (4)

whereI is an index set ofK selected basis functions or atoms.
Clearly, the set of all signals that can be represented byK
terms from a given basis or dictionary constitutes a union of
subspaces, with each subspace indexed by a setI.

Example 5 (Overlapping echoes):Consider overlapping
echoes with unknown delay and amplitude [17], [18].
Illustrated in Figure 1(d), these signals have the form
x(t) =

∑K
k=1 ck φ(t − tk), where the pulse shapeφ(t) is

known; while the delays{tk}K
k=1 and amplitudes{ck}K

k=1 are
unknown. Clearly, the set of all possible echoes constitutes
a union of subspaces, each of which corresponds to a
set of delays {tk}

K
k=1. Signals of this type appear in

many applications such as geophysics, radar, sonar, and
communications. In these applications, from a limited number
of samples of the echo signals, one wishes to find out the
delays and amplitudes.

Example 6 (Signals with unknown spectral support):
Consider the class of continuous-time signals whose Fourier
transforms only occupy a known fraction – but atunknown
locations – on a spectral band[ωmin, ωmax] [see Figure 1(e)].
The sampling problem for this class of signals has been
studied in [19]–[22]. Again, for a fixed set of spectral support,
these signals live in a subspace. With all possible spectral
supports, the signal class can be characterized by a union of
subspaces.

For signals given in the above examples, traditional sam-
pling schemes based on the single subspace assumption can
be either inapplicable or highly inefficient. In principle,we can
always extend the class of signals from a union of subspaces
to the smallest linear vector space that contains it, and carry
out sampling on that space. However, this strategy is often
inefficient since it ignores the additional prior information
about the signals.

For instance, the smallest linear space containing theK-
term sparse signals in Example 4 is the space spanned by the
entire dictionary{φk}

∞
k=1. In contrast, from the definition in

(4), we should be able to completely determine these sparse
signals by using only2K numbers, withK of them speci-
fying the index setI and the rest recording the coefficients
{ck}. Similarly, for signals with unknown spectral support in
Example 6, the smallest linear space containing them is the
space of bandlimited functions supported on the entire spectral
band[ωmin, ωmax], whose Nyquist rate is based on the whole
bandwidthωmax − ωmin. However, the work in [20] shows
that, by exploiting the additional prior knowledge about the
signal spectrum, it is possible to achieve a sampling rate well
below the above Nyquist rate.

Thus the examples above motivate us to fundamentally ex-
tend the traditional sampling theorems by considering signals
from a union of subspacesinstead of asingle space. Our
proposed sampling framework has close ties to the recent work
on sampling signals withfinite rate of innovation[12]–[14],
which demonstrates that several classes of non-bandlimited
signals can be uniformly sampled and perfectly reconstructed.
In a general sense, signals with finite rate of innovation have
a known degree of freedom (i.e. innovation), but the locations
of the innovation are unknown (see Examples 1–3). Therefore,
these types of signals can often be effectively characterized by
unions of subspaces.

Another related work is the recent breakthrough in math-
ematics under the namecompressed sensingor compressive
sampling[23]–[25], which shows that sparse or compressible
finite length discrete signals can be recovered from small
number of linear, non-adaptive, and random measurements.
The number of required measurements has the same order
of magnitude as the number of non-zero or “significant”
coefficients in the input signal, which is typically much smaller
than the length of the signal. The literature on compressed
sensing so far only handles finite-dimensional signals.

Our proposed sampling framework with union of subspaces
provides a generalized and unified framework for finite rate
of innovation sampling, compressed sensing/compressive sam-
pling, and spectrum-blind sampling, in which new results and
derivations are discussed. Moreover, the proposed framework
provides a geometrical approach to finite rate of innovation
sampling and suggest a path for extending the current com-
pressed sensing theory to infinite-dimensional settings and
continuous-domain signals.

In Section II, we formulate the problem of sampling sig-
nals from a union of subspaces and provide a geometrical
interpretation. Section III presents general conditions for in-
vertible and stable sampling operators. We then study the
sampling problem in two concrete settings: in Section IV,
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we consider unions of finite-dimensional subspaces; and in
Section V, we consider unions of infinite-dimensional shift-
invariant subspaces. Section VI concludes the paper with some
outlook.

II. PROBLEM FORMULATION

A. Framework: Linear Sampling from a Union of Subspaces

The examples given in the previous section lead us to
consider the following abstract definition for many classesof
signals of interest.

First, let H be an ambient Hilbert space1 in which our
signals live. Some concrete cases ofH include: in Examples
2 and 3 for piecewise polynomials,H = L2(D), where
D = [0, 1] (or [0, 1]2 for 2-D) is the domain of spatial support;
for overlapping echoes introduced in Example 5, if the pulse
shapeφ(t) is square-integrable, we can chooseH = L2(R);
for signals with unknown spectral support in Example 6,H
can be the space of all functions bandlimited to the largest
possible spectral span[ωmin, ωmax].

Definition 1 (Union of subspaces):The signals of interest
live in a fixedunion of subspacesthat is defined as

X =
⋃

γ∈Γ

Sγ , (5)

whereSγ are subspaces ofH andΓ is an index set. In other
words, a signalx ∈ X if and only if there is someγ0 ∈ Γ
such thatx ∈ Sγ0

.
We consider a general sampling framework in which the

input signalx ∈ X is sampled via a boundedlinear mapping
A into a sequence of numbers{(Ax)n}n∈Λ. We refer to
{(Ax)n}n∈Λ as samplesof x via the sampling operatorA.
From the Riesz representation theorem [26], there exists a
unique set of vectorsΨ = {ψn}n∈Λ in H for any such linear
mappingA so that

(Ax)n = 〈x, ψn〉H (6)

and thus
A : x 7→ {〈x, ψn〉}n∈Λ . (7)

Thus, any bounded linear sampling operatorA is uniquely
specified by the set ofsampling vectorsΨ = {ψn}n∈Λ. In
the form (6),ψn resembles the point spreading function of
the nth measurement device. A case of particular interest is
when the sampling vectors are shifted versions of a common
kernel functionψ; for example,ψn(t) = ψ(t − nT ) and
H = L2(R). In that case, the sampling procedure given
in (7) can be efficiently implemented by filtering followed
by uniform pointwise sampling, which is similar to (2) as
in classical sampling. In various Fourier imaging systems,
including magnetic resonance imaging (MRI),{ψn}n∈Λ are
complex exponential signals on a compact support. In com-
puted tomography, inner products with{ψn}n∈Λ represent
linear integrals.

1We could consider a more general framework where the ambientspace
is a vector space. However, we will restrict to the Hilbert-space setting as
it provides induced norms and is more familiar in the signal processing
community.

Given a class of signals defined as a union of subspaces, it
is attractive to find a fixed representation as in (7) for them.
The natural questions to pursue are the following.

1) When is each objectx ∈ X uniquely represented by its
sampling data{〈x, ψn〉}n∈Λ?

2) What is theminimum sampling requirementfor a signal
classX?

3) What are theoptimal sampling functions{ψn}n∈Λ?
4) What areefficient algorithms to reconstruct a signalx ∈

X from its sampling data{〈x, ψn〉}n∈Λ?
5) How stable is the reconstructionin the presence of noise

and model mismatch?

Note that if X is a single vector spaceS then frame
theory (see, for example, [27, pp. 53-63]) precisely addresses
these questions. In particular, one can reconstruct anyx ∈ S
in a numerically stable way from its sampling dataAx =
{〈x, ψn〉}n∈Λ whenever{ψn}n∈Λ is a frameof S.

In this paper, we study and answer the first two questions
outlined above, which involve the feasibility and fundamental
performance bounds of the proposed sampling framework. It
is our hope that the results from this work, including the
geometrical viewpoint, stable sampling bounds, and minimum
sampling requirement as discussed below, can provide useful
insight and guidelines for the solutions of the remaining
questions in future work.

B. Geometrical Viewpoint

In the Hilbert spaceH, knowing{〈x, ψn〉}n∈Λ is equivalent,
up to a linear transformation, to knowing the projection
PS x of x onto the subspaceS = span{ψn}n∈Λ. We call
S a representation subspace. Clearly, {ψn}n∈Λ provides an
invertible sampling operator forX if and only if there is a
one-to-one mapping betweenPSX andX .

Figure 2 illustrates a simple case, where the signal spaceH
is R

3. The set of signals of interestX =
⋃3

i=1 Si is the union
of three one-dimensional subspaces (three lines going through
the origin). As shown in Figure 2, we projectX down to a
certain subspace (a plane)S and obtainPSX =

⋃3
i=1 PSSi.

We can see that there is an invertible mapping betweenX and
PSX as long as no two subspaces in{Si}

3
i=1 are projected

onto the same line inS [see Figure 2(a)]. In this case, no
information is lost and we have a more compact representation
of the original signals. Thus geometrically, we can think ofthe
proposed linear sampling as projecting the set of signals onto a
lower dimensional representation space, while still preserving
its information.

The first problem is to study the lower bound of the
dimension of invertible representation subspaces, which is
related to the minimum sampling requirement. In the case of
Figure 2, the lower bound is 2 (i.e. a plane), because there
would always be information loss if we projectedX onto any
single line.

We notice that the representation subspaces that provide
invertible or one-to-one mapping are not unique. Although
in theory any of them can be used, they are very different
in practice. For some representation subspaces, the projected
lines are so close to each other [e.g. consider a perturbation
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Fig. 2. An example of a union of subspacesX =
S

3

i=1
Si and its projections onto lower dimensional representationsubspaces. (a) A case of invertible

and stable representation. (b) A case of noninvertible representation. Also, a representation subspace close to this one would lead to unstable representation.

of Figure 2(b)] that sampling becomes very sensitive to noise
and numerical error. So there is an issue in how to choose
the “optimal” representation subspace, or equivalently the
“optimal” sampling vectors.

In the following sections, we will formulate and study the
above geometrical intuitions in a rigorous and quantitative
way.

III. C ONDITIONS FORSAMPLING OPERATORS

A. Definitions

We now go back to the general sampling framework defined
in Section II-A, where the set of signals of interestX is given
in (5) and the sampling operatorA is given in (7). First,
we want to know whether each signalx ∈ X is uniquely
represented by its sampling dataAx.

Definition 2 (Invertible sampling):We callA an invertible
sampling operator forX if eachx ∈ X is uniquely determined
by its sampling dataAx; that means for everyx1 andx2 in
X ,

Ax1 = Ax2 implies x1 = x2. (8)

In other words,A is a one-to-one mappingbetweenX and
AX .

The invertible (or one-to-one) condition allows us to
uniquely identify eachx ∈ X from Ax. However, in practice,
stronger requirements are needed: we want to be able to
reconstructx ∈ X in a numerically stableway from Ax.
To guarantee such an algorithm exists, we need to ensure
that if Ax is “close” to Ay then x is “close” to y as well.
Furthermore, we want that a small change in the signalx
only produces a small change in its sampling dataAx. These
requirements motivate the next condition on the sampling
operator.

Definition 3 (Stable sampling):We call A a stable sam-
pling operator forX if there exist constants0 < α ≤ β <∞
such that for everyx1 ∈ X , x2 ∈ X ,

α‖x1 − x2‖
2
H ≤ ‖Ax1 −Ax2‖

2
l2(Λ) ≤ β‖x1 − x2‖

2
H. (9)

We call α and β stability boundsand the tightest ratio
κ = β/α provides a measure of the stability of the sampling
operator.

Note that we use thel2 norm forAx1 − Ax2 since it is a
sequence of numbers. We can see that stable sampling implies
invertible sampling, whereas the reverse is not true.

The stable sampling condition in (9) is defined in terms of
the squared norm (i.e. energy) of the signals and their sample
values. However, when we work inH = L2(R) and thus
all the signals are functions of a (time) variable, it is often
desirable to consider a more stringent pointwise stabilityas
discussed in [4]. This additional requirement is due to the fact
that two signalsx1(t) andx2(t) can be close in theL2 sense,
but still differ markedly in their pointwise values within some
localized regions.

To bypass this problem, we can adopt the treatment in [4]
by restricting the ambient spaceH to a (reproducing kernel)
subspace ofL2(R) with the following property:

sup
t∈R

|x(t)|2 ≤ α′

∫

R

|x(u)|2 du = α′ ‖x‖2
L2(R), (10)

for all x(t) ∈ H, where 0 < α′ < ∞ is some constant.
Examples of subspaces having the above property include the
space of bandlimited functions, and shift-invariant spaces with
the generating function satisfying some mild conditions [4].
By linking (9) and (10), we get

sup
t∈R

|x1(t) − x2(t)|
2 ≤ α′′ ‖Ax1 − Ax2‖

2
l2(Λ),

for some constant0 < α′′ < ∞. In this case, the proposed
stable sampling condition in (9) implies pointwise stability as
well.

B. Key Observation

The main difficulty in dealing with unions of subspaces
is that, in the last two definitions,x1 and x2 can be from
two different subspaces. In other words, the proposed unique
and stable sampling conditions are defined on anonlinearset.
Consequently, we cannot directly apply various well-known
linear results in matrix and operator theories to study the
proposed sampling conditions. To overcome this problem, we
introduce the following subspaces:

S̃γ,θ
def
= Sγ + Sθ

= {y : y = x1 + x2, wherex1 ∈ Sγ , x2 ∈ Sθ} .
(11)
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Typically, S̃γ,θ has simple interpretations. For instance: in
Example 1 with streams ofK Diracs,S̃γ,θ is a subspace of at
most2K Diracs with fixed location; in Example 2 of piecewise
polynomials,S̃γ,θ is a subspace of piecewise polynomials with
at most2K−1 pieces; and so on. It is easy to see that the set

X̃
def
=

⋃

(γ,θ)∈Γ×Γ

S̃γ,θ

= {y : y = x1 − x2, wherex1 ∈ X , x2 ∈ X} , (12)

consists of allsecant vectors of the setX , which play a
fundamental role in the study of dimensionality reduction [28].

The next two propositions map the invertible and stable
conditions on theunion of subspacesX =

⋃
γ∈Γ

Sγ to those

for singlesubspaces.
Proposition 1: A linear sampling operatorA is invertible

for X if and only if A is invertible for everyS̃γ,θ with (γ, θ) ∈
Γ × Γ.

Proof: Consider the “if” part, that is, assume thatA is
one-to-one on everỹSγ,θ, (γ, θ) ∈ Γ×Γ. Let x1, x2 be vectors
in X such thatAx1 = Ax2. From the definition ofX there
exist γ, θ ∈ Γ, such thatx1 ∈ Sγ , x2 ∈ Sθ. Thusx1, x2 ∈

S̃γ,θ, and from the one-to-one assumption forS̃γ,θ, it follows
that x1 = x2. HenceA is one-to-one onX .

Now consider the “only if” part, that is, assume thatA is
one-to-one onX . Let y1, y2 be vectors inS̃γ,θ, (γ, θ) ∈ Γ×Γ

such thatAy1 = Ay2. Denotez = y1 − y2. BecauseS̃γ,θ

is a subspace,z ∈ S̃γ,θ. From (12), there existx1 ∈ X and
x2 ∈ X such thatz = x1 − x2. SinceA is linear,Ax1 −
Ax2 = Az = Ay1 − Ay2 = 0. It then follows from the one-
to-one assumption forX that x1 = x2. This impliesz = 0,
or equivalently,y1 = y2. Therefore,A is one-to-one on every
S̃γ,θ, (γ, θ) ∈ Γ × Γ.

Proposition 2: A linear sampling operatorA is stable for
X , with stability boundsα andβ, if and only if

α‖y‖2
H ≤ ‖Ay‖2

l2(Λ) ≤ β‖y‖2
H, (13)

for everyy ∈ S̃γ,θ and (γ, θ) ∈ Γ × Γ.
Proof: Starting from the stable sampling condition ofA

given in (9) and using (12) we have

α‖x1 − x2‖
2
H ≤ ‖Ax1 −Ax2‖

2
l2 ≤ β‖x1 − x2‖

2
H

⇐⇒ α‖y‖2
H ≤ ‖Ay‖2

l2 ≤ β‖y‖2
H, for everyy ∈ X̃

⇐⇒ α‖y‖2
H ≤ ‖Ay‖2

l2 ≤ β‖y‖2
H,

for everyy ∈ S̃γ,θ and (γ, θ) ∈ Γ × Γ.

IV. U NION OF FINITE-DIMENSIONAL SUBSPACES

In this section we consider the situation where the subspaces
Sγ (γ ∈ Γ) in X are finite-dimensional, although the ambient
spaceH can be infinite-dimensional and the index setΓ can
be infinite.

A. Minimum Sampling Requirement

Using Proposition 1, we immediately obtain the follow-
ing minimum sampling requirement for union of finite-
dimensional subspaces.

Proposition 3: Suppose thatA : x 7→ {〈x, ψn〉}
N
n=1 is an

invertible sampling operator forX . Then

N ≥ Nmin
def
= sup

(γ,θ)∈Γ×Γ

dim(S̃γ,θ). (14)

Proof: Suppose thatA is one-to-one onX . From Proposi-
tion 1,A is one-to-one on everỹSγ,θ, (γ, θ) ∈ Γ×Γ. It follows
thatdim(S̃γ,θ) = dim(A(S̃γ,θ)). Since the range ofA is in an
N -dimensional vector space,dim(A(S̃γ,θ)) ≤ N . Therefore,
N ≥ dim(S̃γ,θ) for every(γ, θ), and, hence,N ≥ Nmin.

Proposition 3 provides a minimum sampling requirement
(i.e. the minimum number of samples) forlinear sampling. It
states that with a linear sampling scheme, one needs to obtain
at leastNmin samples to provide an invertible representation
for signals fromX .

Consider a simple application of Proposition 3 to Example 1
whereX consists of streams ofK Diracs.2 In this case,S̃γ,θ

are subspaces of streams of Diracs with impulses at up to
2K fixed locations. Thus the minimum sampling requirement
is Nmin = 2K. This is also equal to the number of free
parameters for each signal inX .

The situation becomes more interesting when we consider
Example 2, where the signal classX consists of 1-D piecewise
polynomial signals supported on[0, 1]. Every signal inX
contains at mostK polynomial pieces, each of degree less than
d. We can see that every signal inX can be fully specified by
Kd+K − 1 free parameters, withK − 1 parameters used to
record the locations of the discontinuities andKd parameters
to specify the coefficients of theK polynomial pieces. But is
it sufficient to use onlyKd+K − 1 linear measurements to
fully specify signals fromX?

The above question can be answered by applying Propo-
sition 3. First, we can check that̃Sγ,θ are subspaces of
piecewise polynomials with at most2K − 1 pieces, each of
degree less thand. Thus from (14), the minimum sampling
requirement forX is Nmin = (2K − 1)d. Contrary to what
one might expect,Nmin is strictly greater than the number of
free parametersKd +K − 1 when d > 1. Thus, as a novel
application of our minimum sampling bound, we have shown
that the sampling algorithm proposed in [12] for piecewise
polynomials, which effectively converts the input signal into a
stream of Diracs by repeated differentiation, indeed achieves
the minimum sampling requirementNmin = (2K − 1)d.

B. Invertible Conditions on Sampling Vectors

Recall that a linear sampling operator is specified by a set
of sampling vectorsΨ = {ψn}n∈Λ as defined in (7). We now
study the invertible and stable sampling conditions onΨ. Let
Φ = {φk}

K
k=1 be a basis for a finite dimensional subspaceS.

2Technically, streams of Diracs do not belong to a Hilbert space as required
in our framework; rather, these generalized functions should be treated as
linear functionals on the space of continuous test functions. However, we
can verify that Propositions 1, 3, and 4 hold without change under this
more general setup. The only difference is that, instead of representing inner
products in Hilbert spaces, the notation〈x, ψn〉 should now be understood as
the pairing between the linear functionalx (such as Diracs) with its argument
ψn.
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Then eachx ∈ S has the basis expansion

x =

K∑

k=1

ckφk. (15)

It follows that

(Ax)n = 〈x, ψn〉 =
K∑

k=1

ck〈φk, ψn〉.

Thus, we can expressAx via a matrix-vector multiplication

Ax = GΦ,Ψc, (16)

whereGΦ,Ψ is the (generalized) Gram matrix between the sets
of vectorsΦ = {φk}

K
k=1 andΨ = {ψn}

N
n=1:

GΦ,Ψ
def
=




〈φ1, ψ1〉 〈φ2, ψ1〉 · · · 〈φK , ψ1〉
〈φ1, ψ2〉 〈φ2, ψ2〉 · · · 〈φK , ψ2〉

...
...

. . .
...

〈φ1, ψN 〉 〈φ2, ψN 〉 · · · 〈φK , ψN 〉


 , (17)

andc = (c1, . . . , cK)T is the column vector of coefficients in

the basis expansion ofx. Similarly, if Φγ,θ =
{
φ

(γ,θ)
k

}Kγ,θ

k=1
is

a basis forS̃γ,θ, then fory ∈ S̃γ,θ, we can expressAy via a
matrix-vector multiplication as in (16) with the Gram matrix
GΦγ,θ,Ψ. Hence, the invertible sampling condition ofA in
Proposition 1 is translated into the (left) invertible condition
on Gram matricesGΦγ,θ,Ψ, as follows.

Proposition 4: Let Ψ = {ψn}
N
n=1 be a set of sampling

vectors andΦγ,θ =
{
φ

(γ,θ)
k

}Kγ,θ

k=1
be a basis for̃Sγ,θ. ThenΨ

provides an invertible sampling operator forX if and only if
GΦγ,θ,Ψ has full column rank for every(γ, θ) ∈ Γ × Γ.

Furthermore, if we supposeΦγ,θ =
{
φ

(γ,θ)
k

}Kγ,θ

k=1
is an

orthonormalbasis forS̃γ,θ, then‖y‖H = ‖c‖2. From matrix
theory [29], we know that

σ2
min(G) ‖c‖2

2 ≤ ‖Gc‖2
2 ≤ σ2

max(G) ‖c‖2
2, (18)

for everyc, whereσmin(G) andσmax(G) are the smallest and
largest singular values ofG, respectively. Moreover,σ2

min(G)
andσ2

max(G) provide the tightest bounds for the inequalities
of the type in (18). Hence, the stable sampling condition of
A in Proposition 2 is translated into the classical conditioning
requirements on Gram matricesGΦγ,θ,Ψ.

Proposition 5: Let Ψ = {ψn}
N
n=1 be a set of sampling

vectors andΦγ,θ =
{
φ

(γ,θ)
k

}Kγ,θ

k=1
be an orthonormal basis

for S̃γ,θ. ThenΨ provides a stable sampling operator forX
if and only if

0 < α
def
= inf

(γ,θ)∈Γ×Γ
σ2

min(GΦγ,θ,Ψ)

≤ β
def
= sup

(γ,θ)∈Γ×Γ

σ2
max(GΦγ,θ,Ψ) <∞.

(19)

And α andβ are the tightest stability bounds.

C. Application to Finite Rate of Innovation Sampling

To see applications of the results so far, first let’s revisit
Example 1, where the union of subspacesX consists of
streams ofK Diracs and provides the basic signal model for
finite rate of innovation sampling [12]–[14]. In this case, each
subspaceS̃γ,θ has a basis{δ(t− tk)}

M
k=1 with t1 < t2 <

. . . < tM , andM ≤ 2K. We have already shown the minimum
sampling requirement is2K. Since〈δ(t− t0), ψ(t)〉 = ψ(t0),
it follows from Proposition 4 that a minimum sampling vector
setΨ = {ψn}

2K
n=1 provides an invertible sampling for streams

of K Diracs if and only if

det




ψ1(t1) ψ1(t2) · · · ψ1(t2K)
ψ2(t1) ψ2(t2) · · · ψ2(t2K)

...
...

. . .
...

ψ2K(t1) ψ2K(t2) · · · ψ2K(t2K)


 6= 0, (20)

for everyt1 < t2 < . . . < t2K .
The set of functionsΨ = {ψn}

2K
n=1 satisfying the above

condition (20) is called aTchebycheff system[30]. The clas-
sical example of a Tchebycheff system is the power functions
ψn = tn−1, n = 1, 2, . . . , 2K. In this case, the matrix in (20)
is the familiar Vandermonde matrix. Tchebycheff systems play
a prominent role in several areas of mathematics such as ap-
proximation, interpolation, and numerical analysis. Numerous
examples of Tchebycheff systems are given in [30], including
power functions, Gauss kernels, spline polynomials,sin and
cos functions, and derived systems from these examples (for
instance, if{ψn(t)}

N
n=1 is a Tchebycheff system andw(t) is

a positive and continuous function, then{w(t)ψn(t)}N
n=1 is

also a Tchebycheff system). The particular choices of sam-
pling functions used in the finite rate of innovation sampling
literature [12], [14] are of course among these examples.

The above discussion also applies to the signals of over-
lapping echoes in Example 5. Note that samplingx(t) =∑K

k=1 ck φ(t− tk) with sampling functions{ψn(t)} is equiv-
alent to sampling a stream of Diracs

∑K
k=1 ck δ(t − tk) with

sampling functions
{
ψ̃n(t)

}
, whereψ̃n(t) = 〈φ(· − t), ψn〉.

Thus the invertible sampling condition described in (20) can
be used in the case of overlapping echoes as well.

D. Application to Compressed Sensing

In the compressed sensing setup [23]–[25], the signals of
interest are supposed to have sparse representation, usingup
to K terms from an orthonormal basis{φk} as in Example 4;
i.e.,

X =

{
x : x =

∑

k∈I

ckφk, |I| ≤ K

}
,

whereI is an index set and|I| denotes its cardinality.
Let Ψ = {ψn}

N
n=1 be a set of sampling vectors. For

eachφk in the dictionary{φk}k, consider the column vector
gk = (〈φk, ψ1〉, 〈φk, ψ2〉, . . . , 〈φk, ψN 〉)T , and consider the
matrix G = (gk)k obtained by concatenating all of these
columns. Then the problem of reconstructingx ∈ X from
its sampling dataAx = d is equivalent to solvingc from the
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matrix equationGc = d under the constraint thatc has at
mostK non-zero entries.

Note that in this case, each subspaceS̃γ,θ has an orthonor-
mal basis of the formΦγ,θ = {φk}k∈I with |I| ≤ 2K.
Therefore, the Gram matrixGΦγ,θ,Ψ is formed by taking
subsets of the columns ofG asGI = (gk)k∈I with |I| ≤ 2K.
Hence, applying Proposition 5, we can write the stability
bounds in this case as

α = inf
|I|=2K

λmin(G
∗
IGI),

β = sup
|I|=2K

λmax(G
∗
IGI),

(21)

whereG∗
I is the conjugate transpose ofGI , andλmin(·) and

λmax(·) denote the minimum and maximum eigenvalues.3

Note that the stability bounds derived in (21) are closely
related to the notion ofrestricted isometryin [31]. By noting
that the entries ofG∗

IGI are 〈gk, gl〉, k, l ∈ I, and using
the Geršgorin disc theorem [29, pp. 344 - 345] to bound the
eigenvalues of these matrices, we obtain

α ≥ inf
|I|=2K−1, k/∈I

(
〈gk, gk〉 −

∑

l∈I

|〈gk, gl〉|

)

β ≤ sup
|I|=2K−1, k/∈I

(
〈gk, gk〉 +

∑

l∈I

|〈gk, gl〉|

)
.

(22)

Therefore, for stable sampling, the conditionβ < ∞ is
always satisfied; we only need to ensureα > 0. Without
loss of generality, we can suppose the columns ofG to have
unit norm; i.e.‖gk‖2 = 1. Using thecumulative coherence
functions that were defined in [32] as

µ1(m)
def
= sup

|I|=m, k/∈I

∑

l∈I

|〈gk, gl〉|,

we see from (22) thatA is a stable sampling operator in this
case if

µ1(2K − 1) < 1. (23)

It is easy to see thatµ1(m) ≤ mµ, where µ
def
=

supk 6=l|〈gk, gl〉| is called thecoherenceparameter [33]. These
coherence measures play a fundamental role in the compressed
sensing literature. In comparison with (23), the sharpest avail-
able result in [32] shows under the stricter requirement

µ1(K − 1) + µ1(K) < 1

that two efficient algorithms, Basis Pursuit and Orthogonal
Matching Pursuit, can reconstructK-sparse signals exactly
from its sampling data.

E. Existence of Invertible Minimum Sampling Sets

In the case whereX =
⋃

γ∈Γ

Sγ is a union of countable

subspaces, the following proposition shows that the minimum
sampling requirement is achieved by a dense set of sampling
vectors.

3We have used the following equalities:λmin(G∗G) = σ2

min
(G) and

λmax(G∗G) = σ2
max(G).

Proposition 6 (Existence of Invertible Sampling Operators):
Suppose thatX =

⋃
γ∈Γ

Sγ is a countableunion of subspaces

of H, and suppose thatNmin as defined in (14) is finite.
Then the collection of sampling vectors{Ψ = {ψn}

Nmin

n=1 : Ψ
provides an invertible sampling operator forX} is dense in
HNmin.

Proof: Consider the following function that is defined for
each(γ, θ) ∈ Γ×Γ as the determinant of the Gram matrix in
(17); i.e.

fΦγ,θ
(ψ1, . . . , ψNmin

)
def
= det(GΦγ,θ,Ψ), (24)

where Φγ,θ = {φ
(γ,θ)
k }Nmin

k=1 is some basis forS̃γ,θ (if
dim(S̃γ,θ) < Nmin then we augment its basis to a set ofNmin

linearly independent vectors). From Proposition 4,Ψ provides
an invertible sampling operator iffΦγ,θ

(ψ1, . . . , ψNmin
) 6= 0

for every(γ, θ) ∈ Γ × Γ.
Due to the continuity of the inner products and the conti-

nuity of determinant with respect to matrix entries,fΦγ,θ
is

continuous onHNmin . Define the set

OΦγ,θ

def
= {(ψ1, . . . , ψNmin

) : fΦγ,θ
(ψ1, . . . , ψNmin

) 6= 0}

= f−1
Φγ,θ

((−∞, 0) ∪ (0,+∞)) . (25)

Since the set(−∞, 0)∪ (0,+∞) is open andf is continu-
ous,OΦγ,θ

is open inHNmin . As shown in the appendix,OΦγ,θ

is also a dense set. Now the set of invertible sampling vectors
O =

⋂
(γ,θ)∈Γ×Γ

OΦγ,θ
is a countable intersection of dense open

sets in the complete metric spaceHNmin. Hence, by the Baire
theorem [34],O is dense inHNmin.

As a nice application of this result, consider Example 4
of sparse representations. SupposeH is a separable Hilbert
space and let{φk}

∞
k=1 be a countable basis forH. Then the

setX of all possibleK-term representations as given in (4)
using this basis constitutes a countable union of subspaces
of dimensionK in H. On the one hand, from Proposition 3,
an invertible sampling operator requires at least2K sampling
vectors. On the other hand, from Proposition 6, the collection
of 2K vector sets{ψn}

2K
n=1 that provide invertible sampling

operators is dense.
Existence results on invertible sampling operators of this

type were shown in the compressed sensing literature [23]–
[25], but only forfinite unions of finite dimensional subspaces
and with extralog and constant factors on the number of
required sampling vectors. However, our result here does not
imply stable sampling.

Note that Proposition 6 does not cover the case in Example 1
with streams ofK Diracs, in which the index setΛ = R

K is
not countable. As discussed in Section IV-C, only Tchebycheff
systems lead to invertible sampling operators.

V. UNION OF SHIFT-INVARIANT SUBSPACES

In this section, we consider the case where the ambient
spaceH = L2(R) and the setX of signals of interest is a
union of infinite-dimensional shift-invariant subspaces.
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A. Shift-Invariant Subspaces

A finitely-generated shift-invariant subspace inL2(R) is
defined as [35]

SΦ =

{
x(t) =

K∑

k=1

∑

m∈Z

ck,mφk(t−mT ) : c ∈ l2

}
, (26)

whereΦ = {φk}
K
k=1 is called the set of generating functions

of SΦ, and c = {ck,m}1≤k≤K, m∈Z
is called the coefficient

set ofx(t). For expositional simplicity, we will setT = 1 by
rescaling the time axis.

To make the representation in (26) stable and unam-
biguous, we require that the family of functions{φk(t −
m)}1≤k≤K, m∈Z form a Riesz basis ofSΦ [35], [36], [3]. This
means that there must exist positive constants0 < αΦ ≤ βΦ <
∞ such that

αΦ‖c‖
2
l2 ≤

∥∥∥∥∥

K∑

k=1

∑

m∈Z

ck,mφk(t−m)

∥∥∥∥∥

2

L2(R)

≤ βΦ‖c‖
2
l2 ,

(27)
for all c ∈ l2, where ‖c‖2

l2
=
∑K

k=1

∑
m∈Z

|ck,m|2 is the
squaredl2-norm of c. Note that this requirement implies any
functionx(t) ∈ SΦ has finite energy and is uniquely and stably
determined by its coefficientsc.

Analogous to thedimensionof a finite-dimensional sub-
space, thelengthof a shift-invariant subspaceS is defined to
be the cardinality of the smallest generating set forS [35];
i.e.,

len(S)
def
=

min
{
K : S can be generated by{φk}

K
k=1

}
.

(28)

For example, for the spaceSΦ given in (26), we have
len(SΦ) = K if the generating functions{φk}

K
k=1 satisfy the

Riesz basis condition in (27).
A common approach to studying shift-invariant subspaces

is to consider the Fourier domain [35], [36], [10]. Taking the
Fourier transform ofx(t) in (26) and exchanging the order of
integrations, we have

x̂(ω) =
K∑

k=1

∑

m∈Z

∫ ∞

−∞

ck,m φk(t−m) e−jωtdt

=
K∑

k=1

ĉk(ω) φ̂k(ω), (29)

where φ̂k(ω)
def
=
∫∞

−∞
φk(t)e−jωtdt is the Fourier transform

of φk(t) and ĉk(ω)
def
=
∑

m ck,me
−jωm is the discrete-time

Fourier transform of the sequenceck = {ck,m}m∈Z
. Using

(29), one can derive an equivalent Riesz basis requirement in
the Fourier domain. We refer to [36], [10] for details.

B. Sampling Signals from a Union of Shift-Invariant Sub-
spaces

Now we consider the class of signals that can be modeled
asX =

⋃
γ∈Γ

SΦγ
, where each subspaceSΦγ

is a shift-invariant

subspace generated by a finite set of functionsΦγ . We want to

x(t)

ψ1(−t)

ψN (−t)

d1,m

dN,m

Fig. 3. Multi-channel sampling. The input signalx(t) is first filtered by a

bank ofN filters,
n

ψn(−t)
oN

n=1

, and then the sampling data are taken at

time instancesm ∈ Z.

sample signals fromX by a sampling operatorA characterized
by a set of sampling vectors{ψn}n∈Λ.

We consider the case where the set of sampling vectors
takes the form of{ψn(t−m)}1≤n≤N, m∈Z

. In this case, the
sampling procedure of computing〈x, ψn(· − m)〉 can be
efficiently implemented by a bank of filtering followed by
uniform pointwise sampling, as illustrated in Figure 3.

Specifically, by denotingξn(t) = ψn(−t) we can express
the sampling data as

dn,m
def
= 〈x, ψn(· −m)〉 = (x ∗ ξn)(m). (30)

In other words,{dn,m}m∈Z
is the uniform sampling of the

function(x∗ξn)(t) in the classical sense. Applying the classi-
cal sampling formula in the Fourier domain (as obtained from
the Poisson summation formula), we can write the discrete-
time Fourier transform of the sequencedn

def
= {dn,m}m∈Z

as

d̂n(ω)
def
=
∑

m∈Z

dn,me
−jωm

=
∑

m∈Z

x̂(ω + 2πm) ξ̂n(ω + 2πm). (31)

Therefore, if x(t) ∈ SΦ and is defined as in (26), then

substituting (29) into (31), and noting that̂ξn(ω) = ψ̂n(ω)
and ĉk(ω) is a 2π-periodic function, we obtain

d̂n(ω) =

K∑

k=1

∑

m∈Z

ĉk(ω + 2πm) φ̂k(ω + 2πm) ψ̂n(ω + 2πm)

=

K∑

k=1

(
∑

m∈Z

φ̂k(ω + 2πm) ψ̂n(ω + 2πm)

)
ĉk(ω).

(32)

This leads to a compact relation between the sam-
pling data d

def
= {dn,m}1≤n≤N, m∈Z

and coefficientsc
def
=

{ck,m}1≤k≤K, m∈Z
of x(t) ∈ SΦ via a matrix-vector mul-

tiplication in the Fourier domain

d̂(ω) = GΦ,Ψ(ω) ĉ(ω), (33)

where ĉ(ω)
def
= (ĉ1(ω), ĉ2(ω), . . . , ĉK(ω))T and

d̂(ω)
def
= (d̂1(ω), d̂2(ω), . . . , d̂N (ω))T are column vectors, and

GΦ,Ψ(ω) is anN ×K matrix with entries

{GΦ,Ψ(ω)}n,k

def
=
∑

m∈Z

φ̂k(ω + 2πm) ψ̂n(ω + 2πm). (34)
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Note that (33)-(34) closely resemble (16)-(17), and thus we
can considerGΦ,Ψ(ω) as the Fourier-domain Gram matrix
between two sets of generating functionsΦ = {φk(t)}K

k=1

andΨ = {ψn(t)}
N
n=1.

C. Sampling Conditions for Union of Shift-Invariant Sub-
spaces

Using the results from Section III we can derive the
sampling conditions for a union of shift-invariant subspaces
X =

⋃
γ∈Γ

SΦγ
by considering subspaces̃SΦγ,θ

def
= SΦγ

+ SΦθ
.

Clearly, S̃Φγ,θ
is also a shift-invariant subspace that can be

generated by the set of functionsΦγ ∪ Φθ. DenoteΦγ,θ as a
set of generating functions for a Riesz basis forS̃Φγ,θ

. Thus, it
follows from the definition in (28) that|Φγ,θ| = len(S̃Φγ,θ

) ≤
len(SΦγ

)+len(SΦθ
) = |Φγ |+|Φθ|. Applying the relation given

in (33), we can expressAy for y ∈ S̃Φγ,θ
via a matrix-vector

multiplication in the Fourier domain with the Gram matrix
GΦγ,θ,Ψ(ω) of sizeN × len(S̃Φγ,θ

).
Proposition 7: Suppose that the mappingA : x 7→

{〈x, ψn(· −m)〉}1≤n≤N, m∈Z
is an invertible sampling oper-

ator forX =
⋃

γ∈Γ

SΦγ
. Then

N ≥ Nmin = sup
(γ,θ)∈Γ×Γ

len(S̃Φγ,θ
). (35)

Proof: From Proposition 1,A is an invertible sampling
operator forX if and only if A is one-to-one on everỹSΦγ,θ

,
(γ, θ) ∈ Γ × Γ. Hence, from the matrix-vector representation
given in (33), the invertible sampling condition is equivalent to
the Gram matrixGΦγ,θ,Ψ(ω) having full column rank, which
implies thatN ≥ |Φγ,θ| = len(S̃Φγ,θ

) for every(γ, θ) ∈ Γ×Γ.

Proposition 7 provides an easy-to-compute minimum sam-
pling requirementNmin, interpreted as the minimum number
of channels in the multi-channel sampling illustrated in Fig-
ure 3, or equivalently the minimum number of samples per
unit of time, for a union of shift-invariant subspaces. Using
the same reasoning leading to Proposition 7, we can obtain
the following condition for invertible sampling, whose proof
is omitted due to similarity.

Proposition 8: Let Ψ = {ψn}
N
n=1 be a set of sam-

pling functions andΦγ,θ =
{
φ

(γ,θ)
k

}Kγ,θ

k=1
be a set of

generating functions of a Riesz basis for̃Sγ,θ. Then
{ψn(· −m)}1≤n≤N, m∈Z

provides an invertible sampling op-
erator for X =

⋃
γ∈Γ

SΦγ
if and only if, for any choice of

(γ, θ) ∈ Γ × Γ, the corresponding Gram matrixGΦγ,θ,Ψ(ω)
has full column rank for almost4 everyω.

Next we will derive stability conditions for sampling.
For simplicity, similar to Proposition 5, we suppose that{
φ

(γ,θ)
k (· −m)

}

1≤k≤Kγ,θ, m∈Z

is an orthonormal basis for

S̃Φγ,θ
. This assumption is made without loss of generality,

4This technicality is due to the fact that, for some generating functionsΦγ,θ

and sampling functionsΨ, the corresponding Gram matrixGΦγ,θ ,Ψ(ω) may
not have well-defined pointwise values on a set of measure zero.

since, analogous to [36, Theorem 4.1] on the existence and
construction of the dual basis, we can always orthogonalize
a set of generating functions for a shift-invariant subspace to
obtain an orthonormal basis for it.

Proposition 9: Let Ψ = {ψn}
N
n=1 be a set of sampling

functions andΦγ,θ =
{
φ

(γ,θ)
k

}Kγ,θ

k=1
be a set of gener-

ating functions of an orthonormal basis for̃Sγ,θ. Then
{ψn(· −m)}1≤n≤N, m∈Z

provides a stable sampling operator
for X =

⋃
γ∈Γ

SΦγ
if and only if

0 < α
def
= ess inf

(γ,θ)∈Γ×Γ, ω∈[−π,π]
σ2

min(GΦγ,θ,Ψ(ω)) (36)

≤ β
def
= ess sup

(γ,θ)∈Γ×Γ, ω∈[−π,π]

σ2
max(GΦγ,θ,Ψ(ω)) <∞. (37)

And α andβ are the tightest stability bounds.
Proof: Suppose that y ∈ S̃γ,θ and c =

{ck,m}1≤k≤Kγ,θ, m∈Z
is the coefficients ofy. Since the set

of vectors
{
φ

(γ,θ)
k (· −m)

}

1≤k≤Kγ,θ, m∈Z

is an orthonormal

basis ofS̃γ,θ, it follows that ‖y‖L2 = ‖c‖l2 .
Using the Parseval equality, we have

‖c‖2
l2 =

Kγ,θ∑

k=1

‖ck‖
2
l2 =

1

2π

Kγ,θ∑

k=1

∫ ∞

−∞

|ĉk(ω)|2dω

=
1

2π

∫ ∞

−∞

ĉ
∗(ω) ĉ(ω)dω,

(38)

where ĉ(ω)
def
= (ĉ1(ω), ĉ2(ω), . . . , ĉKγ,θ

(ω))T and ĉ
∗(ω) is

the conjugate transpose ofĉ(ω). Similarly, for sampling data
Ay = d = {dn,m}1≤n≤N, m∈Z

, we have

‖d‖2
l2 =

1

2π

∫ ∞

−∞

d̂
∗
(ω) d̂(ω)dω.

Since d̂(ω) = GΦγ,θ,Ψ(ω) ĉ(ω), we know from matrix
theory that for (almost) everyω,

σ2
min(GΦγ,θ,Ψ(ω)) ĉ

∗(ω) ĉ(ω) ≤ d̂
∗
(ω) d̂(ω)

≤ σ2
max(GΦγ,θ,Ψ(ω)) ĉ

∗(ω) ĉ(ω).

Therefore,
(

ess inf
ω∈[−π,π]

σ2
min(GΦγ,θ,Ψ(ω))

)
‖c‖2

l2 ≤ ‖d‖2
l2

≤

(
ess sup
ω∈[−π,π]

σ2
max(GΦγ,θ,Ψ(ω))

)
‖c‖2

l2 .

And the bounds are tight. Combining these bounds for all
(γ, θ) ∈ Γ×Γ and using Proposition 2, we obtain the desired
result.

D. Case Study: Spectrum-Blind Sampling of Multiband Sig-
nals

To demonstrate the proposed theory of sampling signals
from a union of shift-invariant subspaces, we will revisit here
the problem described in Example 6, where the signals of
interest are multiband signals with unknown spectral support.
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Our discussions differ in style as well as in technical details
from some of the original results of Bresleret al. [20]–[22],
who first proposed and studied the spectrum-blind sampling
and reconstruction of these multiband signals.

As shown in Figure 1(e), we partition the spectral spanF =
[ωmin, ωmax] intoL equally spaced spectral cells{Ci}

L−1
i=0 . For

simplicity of exposition, we setωmax − ωmin = 2πL (after
rescaling the time axis); each cell can then be specified as
Ci = [ωmin+2πi, ωmin+2π(i+1)]. The signals to be sampled
have nonzero frequency values in at mostK spectral cells
(with K ≪ L), though we do not know the exact locations of
these cells.

Clearly, the signals of interest form a union of subspaces,
and can be written as

X (MB) =
⋃

γ∈Γ

S
(BL)
Fγ

,

whereγ
def
= {q1, q2, . . . , qK : 0 ≤ qk < L} represents a set of

indices, specifying a possible choice ofK, out ofL, spectral
cells;Fγ

def
=

⋃
qk∈γ

Cqk
is the finite union of theseK cells; and

S
(BL)
Fγ

is the subspace of all continuous functions bandlimited
to Fγ .

To apply the results in Section V-C, we consider the sub-
spaceS̃Fγ,θ

= S
(BL)
Fγ

+S
(BL)
Fθ

, which consists of all continuous
functions bandlimited toFγ,θ = Fγ ∪Fθ. Let φi(t) represent
the function whose Fourier transform is the indicator function1Ci

(ω) of the ith cell, i.e.,

φ̂i(ω) = 1Ci
(ω), 0 ≤ i < L. (39)

We can then verify that the shift-invariant subspaceS̃Fγ,θ
has

an orthonormal basis{φqk
(· −m)}qk∈γ∪ θ, m∈Z

, whereγ∪θ =
{q1, q2, . . . , qM} are the indices of theM different cells in
Fγ∪ θ. Since len(S̃Fγ,θ

) = M = |γ ∪ θ| ≤ |γ| + |θ| = 2K
with equality whenγ and θ are disjoint, it follows from the
minimum sampling requirement in Proposition 7 that we need
at leastNmin = 2K samples per unit of time to determine
uniquely all signals fromX (MB) from their sampling data.
This is twice the rate we would need if we possessed prior
knowledge about the frequency support. However, this min-
imum sampling rate can still be much more efficient than
the Nyquist rate, which is based on the entire bandwidth
ωmax − ωmin = 2πL and, therefore, requiresL(≫ 2K)
samples per unit of time.

Next, we will show that the above minimum sampling
rate can be achieved, i.e., there exist suitable choices of2K
sampling functions{ψn}

2K
n=1 providing stable sampling for

X (MB).

Proposition 10: The sampling processA : x 7→
{〈x, ψn(· −m)〉}1≤n≤2K, m∈Z

is a stablesampling operator
for the multiband signalsX (MB) if the Fourier transforms of

the sampling functionŝΨ =
{
ψ̂n(ω)

}2K

n=1
are continuous and

form a Tchebycheff system on the interval[ωmin, ωmax], i.e.,

det




ψ̂1(ω1) ψ̂1(ω2) · · · ψ̂1(ω2K)

ψ̂2(ω1) ψ̂2(ω2) · · · ψ̂2(ω2K)
...

...
. . .

...
ψ̂2K(ω1) ψ̂2K(ω2) · · · ψ̂2K(ω2K)


 6= 0, (40)

for all choices ofωmin ≤ ω1 < ω2 < . . . < ω2K < ωmax.
Proof: First, we substitute (39) into (34), and write the

entries of the Gram matrix as
{
GΦγ,θ,Ψ(ω)

}
n,k

=
∑

m∈Z

1Cqk
(ω + 2πm) ψ̂n(ω + 2πm),

(41)

whereqk is the index of thekth cell in Fγ∪ θ, and1 ≤ k ≤
2K. Since (41) represents a2π-periodic function, we only
need to evaluate its values in one period. On the intervalω ∈
[ωmin, ωmin + 2π], we have1Cqk

(ω + 2πm) =

{
1 whenm = qk,

0 whenm 6= qk,
(42)

and thus
{
GΦγ,θ,Ψ(ω)

}
n,k

= ψ̂n(ω + 2πqk),

for 1 ≤ n, k ≤ 2K. Consequently, the condition in (40)
simply implies that the Gram matrixGΦγ,θ,Ψ(ω) always has
full column rank.

Next, denoteαγ,θ(ω) = σ2
min(GΦγ,θ,Ψ(ω)) andβγ,θ(ω) =

σ2
max(GΦγ,θ,Ψ(ω)). For any fixed(γ, θ), we know from the

full rank property of GΦγ,θ,Ψ(ω) that 0 < αγ,θ(ω) ≤
βγ,θ(ω) < ∞ for all ω ∈ [ωmin, ωmin + 2π]. Since both
αγ,θ(ω) and βγ,θ(ω) are continuous functions ofω (due to

the assumption that
{
ψ̂n(ω)

}
are continuous functions on

[ωmin, ωmax]), we can further conclude that there existαγ,θ

andβγ,θ (independent ofω) such that0 < αγ,θ ≤ αγ,θ(ω) ≤
βγ,θ(ω) ≤ βγ,θ <∞ for all ω on the finite and closed interval
[ωmin, ωmin+2π]. Moreover, since there is only afinitenumber
of choices for(γ, θ) (corresponding to all possible configura-
tions of choosing up to2K cells out ofL cells), we can find
constantsα, β such that0 < α ≤ αγ,θ ≤ βγ,θ ≤ β < ∞ for
all (γ, θ), which implies the conditions in (36) and (37) for
stable sampling.

In the following, we give two concrete examples of the sam-
pling functions{ψn}

2K
n=1 that satisfy the conditions required

in Proposition 10. The first is to consider

ψ̂n(ω) = e−j n−1

L
ω 1F (ω), 1 ≤ n ≤ 2K, (43)

where1F (ω) is the indicator function of the spectral spanF .
It is easy to verify (from the property of the Vandermonde
matrix) that the determinant of the matrix in (40) is always
different from zero. Since any functionx(t) from X (MB)

is bandlimited withinF , we can obtain from (30) that the
resulting sampling data can be written as

dn,m = x

(
m+

n− 1

L

)
, (44)
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for 1 ≤ n ≤ N and m ∈ Z. This becomes exactly
the original sampling scheme proposed in [20], where the
sampling data are obtained by directly taking the pointwise
values of the input signal on a periodic nonuniform pattern⋃N

n=1

⋃
m∈Z

(m+ n−1
L ).

In the second example, we propose a new sampling scheme
that has not been considered in the previous work [20]–[22].
Let the sampling functions be Gaussian kernels defined (in the
Fourier domain) as

ψ̂n(ω) = e−ω2n/σ2

, 1 ≤ n ≤ 2K, (45)

for some constantσ > 0. In this case, the matrix in (40)
becomes a (generalized) Vandermonde matrix, whose elements{
e−ω2

k/σ2

}2K

k=1
are always distinct for arbitrary choice of

ωmin ≤ ω1 < ω2 < . . . < ω2K < ωmax, as long as we
assume5 ωmin ≥ 0. It then follows from Proposition 10 that
the proposed sampling vectors given in (45) can also provide
stable sampling for the multiband signals.

The sampling data in this case aredn,m =
(x(t) ∗ ψn(t)) (m), where the spatial domain sampling
functions areψn(t) = e−t2σ2/(4n)

√
σ2/(4nπ). Compared

with the previous sampling scheme shown in (44), the
proposed new scheme differs in two ways: first, instead
of directly taking pointwise values, the sampling data are
now obtained by averaging the input signals with Gaussian
kernels; second, all the sampling data in the new scheme are
taken at the same sampling instances (i.e.m ∈ Z) without a
timing shift. The latter property can be desirable in practical
implementations, since it eliminates the need to carefully
control the timing offsets between different sampling cosets,
which was required in the periodic nonuniform sampling
procedure in (44).

Finally, we would like to point out that the class of stable
sampling vectors for the multiband signals are not limited to
the two choices given in (43) and (45). As we have shown
in Proposition 10, a set of2K sampling functions provide
stable sampling forX (MB) if their Fourier transforms are
continuous and form a Tchebycheff system on the interval
ω ∈ [ωmin, ωmax]. The two particular choices in (43) and
(45) are just special cases of the Tchebycheff systems, which
contain many other possibilities as mentioned in Section IV-C.
This generalization about suitable sampling functions opens
door to greater flexibilities in the design of the sampling
systems.

VI. CONCLUSIONS

We proposed a new sampling problem where the signals of
interest live on a union of subspaces. The first two questions
outlined in Section II-A were addressed in this work, which
involve the feasibility and performance bounds of the proposed
sampling framework. The key geometrical viewpoint was to
find a suitable sampling operator which projects the signalsof
interest into a lower dimensional representation space while
still preserves all the information. Starting from the caseof

5This assumption is made without loss of generality, since wecan always
apply a frequency modulation to the signals before sampling, to make the
assumed condition hold.

unions of finite-dimensional subspaces, we derived necessary
and sufficient conditions for such sampling operators to exist,
and found the minimum sampling requirement. Next, we
extended all the results to the case of unions of infinite-
dimensional shift-invariant subspaces.

The proposed sampling framework for unions of subspaces
has close ties to the prior work of finite rate of innova-
tion sampling, compressed sensing/compressive sampling,and
spectrum-blind sampling, in which new results and derivations
were discovered. It is our hope that the proposed framework
can serve as a common ground and facilitate the interplay
between the above three lines of thinking. Moreover, the
idea of modeling signals as coming from unions of sub-
spaces provides a useful geometrical viewpoint for finite rate
of innovation sampling and suggests a path for extending
the current compressed sensing/compressive sampling work
from discrete and finite dimensional cases to continuous and
infinite-dimensional cases (e.g. by considering unions of shift-
invariant subspaces).

APPENDIX

We will show that for a linearly independent set of vectors
Φ

def
= {φ1, φ2, . . . , φN}, the setOΦ defined in (25) is dense in

HN . Geometrically, this means that, given anN -dimensional
subspace, the set ofN -dimensional subspaces onto which the
former subspace can be projected without losing dimensions
is dense.

Suppose thatΨ
def
= {ψ1, ψ2, . . . , ψN} /∈ OΦ. We will show

that there exists ãΨ ∈ OΦ that is arbitrarily close toΨ. For
the Gram matrixGΦ,Ψ as defined in (17), its singular value
decomposition has the form

GΦ,Ψ = UΛV ∗,

whereU andV are two unitary matrices, andΛ is a diagonal
matrix with real andnon-negativeentries. We can always find
another diagonal matrixΛ2 such that for allα > 0, Λ+αΛ2

is a diagonal matrix with real andpositiveentries.
Since {φn}

N
n=1 is a linearly independent set, it is

easy to verify thatGΦ,Φ is invertible. Let Ψ̃ = Ψ +

αUΛ2V ∗G−1
Φ,Φ Φ. Because the Gram matrix is linear with

respect to its constituent sets of vectors, we have

GΦ,eΨ = GΦ,Ψ + αUΛ2V ∗G−1
Φ,ΦGΦ,Φ = U(Λ + αΛ2)V ∗.

Thus, by constructiondet(GΦ,eΨ) 6= 0, which means̃Ψ ∈
OΦ. Sinceα can be arbitrarily small, we are done.
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