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T
he National Academy of Engineering recently 
identified 14 grand challenges for engineering in 
the 21st century (www.engineeringchallenges.
org). We believe that the continuing advances 
in ubiquitous sensing, processing, and computing 

provide the potential to tackle two of these 14 grand challeng-
es: specifically, enhancing virtual reality and advancing 
 personalized learning.

INTRODUCTION
Recently, the ubiquity of digital cameras has made a great 
impact on visual communication as can be seen from the explo-
sive growth of visual contents on the Internet and the default 
inclusion of a digital camera on cell phones and laptops. Two 
recent developments in sensing and computing have the poten-
tial to revolutionize visual communication further by enabling 
immersive and interactive capabilities. The first development is 
the emergence of lower-priced, fast, and robust cameras for 
measuring depth [1]. Depth measurements provide a perfect 
complementary information to the traditional color imaging in 
capturing the three-dimensional (3-D) scene. The second devel-
opment is the general-purpose parallel computing platforms 
such as graphics processing units (GPUs) that can significantly 
speedup many visual computing tasks [2] and bring them to the 
real-time realm. These developments and high demand for 
immersive communication present a tremendous opportunity 
for the signal processing field.
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In particular, we envision systems, called remote reality, 
which can record real scenes and render 3-D free-viewpoint 
videos and augment it with virtual reality. Such a system 
can provide immersive and interactive 3-D viewing experi-
ences for personalized distance learning and immersive com-
munication. With recorded 3-D visual information, users can 
freely choose their viewpoints as if each of them had a virtual 
mobile camera. When users want to get a closer look at some 
part of a remote scene, they simply have to move the virtual 
camera to a suitable location. With depth keying, the video 
background can be removed and replaced by other interac-
tive backgrounds. Moreover, 3-D free-viewpoint videos can be 
merged with objects of virtual 3-D worlds. Then users 
become integral parts of a virtual world, which frees them 
from some of the constraints imposed by current telecom-
munication systems.
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This term measures the 
impact of the actual cameras 
on the virtual camera based 
on their relative geometrical 
positions. 

The depth jittering term

 Bv 5 sup
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where d1u2 is the depth at surface point g1u2 to the virtual 
image plane. This quantity measures how geometrically 
 deviated the virtual camera is from the actual cameras.

Based on the above definitions, the following theorem presents 
a bound on the rendering quality of the propagation algorithm. 

Theorem 1 [5]: The MAE of the virtual image using the 
propagation algorithm is bounded by

 MAE#
3Y3

4Y1
Dx

27fvrr7̀ 1 ET 1 EDBv7fvr7̀ . (5)

We note that the first term in (5) is related to the interpola-
tion error in the texture regions. The second term is related to 
the quality of the actual color cameras. The third term mea-
sures the impact of the depth and its estimate. 

INTERPRETATIONS
In this section, we provide interpretations of the result in the 
section “Results.” The idea is to look at each component of the 
error bound in (5) and find its physical meaning and implica-
tions on IBR applications. These interpretations should only be 
considered as “rules of thumb” when designing IBR systems. 
For rigorous analysis, we refer to the original paper [5].

 � Rule 1: In texture regions, the density of actual pixels 
counts. It can be shown that Y3 5 O1N2 22. Hence, the first 
term in (5) behaves as O1Dx

2/N22. In other words, increasing 
the resolution of actual cameras has a similar effect to hav-
ing more actual cameras in texture regions. 

 � Rule 2: The impact of the actual camera quality on the 
MAE is linear. It is intuitive to see that the quality of actual 
cameras effect directly to the rendering quality. However, 
the result in (5) also reveals that the rendering quality is 
linearly proportional to the actual camera quality (for both 
color and depth). 

 � Rule 3: Use neighboring actual cameras when depth is 
inaccurate. To reduce the impact of depth errors, i.e., the 
third term, two options are available. The first option is 
obvious, to equip with better depth cameras, which is to 
reduce ED. The second option is to reduce Bv, or equivalent-
ly to use information from actual cameras that are close to 
the virtual camera. 

FAST PROCESSING USING 
GENERAL-PURPOSE PARALLEL COMPUTING
A major advantage of the algorithm outlined in the section 
“Image-Based Rendering with Depth Cameras Using 

Propagation Algorithm” is that 
it can be easily mapped onto 
data parallel architectures 
such as modern GPUs. In this 
 section, we briefly describe the 
parallelism of each processing 
step of our algorithm, and the 

high-level mapping onto the Nvidia CUDA architecture for 
GPU-based computing. 

The occlusion removal and CBDF stages are purely par-
allel as each pixel in the desired view can be computed inde-
pendently. In the depth propagation stage, copying the 
depth values in the reference view to appropriate pixels in 
the desired view is more complex from a parallelism per-
spective since, at some pixels, this is not a one-to-one map-
ping. This operation requires some form of synchronization 
to prevent concurrent writes to the same pixel and can be 
accomplished with the use of atomic memory operations, or 
alternatively, with the use of Z-buffering hardware available 
on modern GPUs.

The disocclusion filling stage also has a sequential compo-
nent since calculating unknown depth information is depen-
dent on previously interpolated values. However, this 
dependence exists only on one-dimensional (1-D) lines ema-
nating from the epipole point, and thus the problem can be 
expressed as a parallel set of 1-D filters. First, find the epipole 
point position and categorize into one of eight following sub-
sets: top, bottom, left, right, top left, top right, bottom left, or 
bottom right, corresponding to eight sets of par allel lines for 
every 45° angle. The parallel lines in each set need to pass 
through all pixels in the depth image. For each set of parallel 
lines, all pixel coordinates of each line can be precomputed 
and stored in a lookup table.

The 1-D CBDF is performed with each line proceeding in 
parallel, which can be easily mapped onto the GPU archi-
tecture. The depth edge enhancement stage is simply a 
series of independent window-based operators and, hence, 
is naturally parallel. The final rendering step is quite simi-
lar to the first and second part of the algorithm except for 
the inclusion of a median filter. However, the median filter 
is another window-based operator and, hence, is suitable 
for parallelism. 

Regarding the parallel scalability of our algorithm: our 
experiments show that there is ample data parallelism to 
take advantage of the heavily threaded 128-core modern 
GPU architecture. Our technique scales further with image 
size, and higher resolution images will create additional 
parallel work for future data parallel architectures that 
support still higher degrees of parallelism. Furthermore, 
with the use of additional cameras, the data parallel com-
putational load increases still further, creating additional 
work that can be gainfully accelerated on future data par-
allel architectures.

To check the efficiency of the parallelism, we compare the 
CPU-based implementation and the preliminary GPU-based 

A MAJOR ADVANTAGE OF OUR 
PROPOSED ALGORITHM  IS THAT IT CAN 

BE EASILY MAPPED ONTO DATA PARALLEL 
ARCHITECTURES SUCH AS MODERN GPUs.
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implementation of the depth 
propagation stage and the CBDF 
stage. The experiment was run 
on the platform of Intel Core2 
Duo E8400 3.0 GHz and a 
Nvidia GeForce 9800GT 600 
MHz with 112 processing cores.

Table 1 shows the comparison results of two representa-
tive processing steps in the 3-D propagation algorithm. The 
depth propagation step, as mentioned above, requires 

 memory  synchronization to 
prevent concurrent writes 
and thus limits the effec-
tiveness of multithread. As a 
result, we observe the least 
speedup in the GPU imple-
mentation  compared to the 

CPU implementation. The CBDF step, in contrast, is highly 
parallel and benefits a very large speedup with GPU. Since 
the CBDF step consumes the most computing time in the 
CPU implementation, the mapping from CPU to GPU sig-
nificantly speeds up the overall computing time of the 3-D 
propagation algorithm and has potential to achieve 
 real-time performance.

NUMERICAL EXPERIMENTS
In this section, we provide results from the implementation 
of the above algorithm using actual depth and color cameras. 
For our experiment, we used one PMD CamCube depth cam-
era with a resolution of 204 3 204 and three Point Grey 
Flea2 color research cameras, each with a resolution of 
640 3 480. The cameras were arranged similar to a typical 
teleconference setup. Two color cameras were placed approx-
imately 20 in apart with a depth camera in the middle. A 
third camera was used to provide a ground truth for the vir-
tual camera. Figure 7 shows the setup. Note that these cam-
era are not necessarily on a consistent baseline, which 
demonstrates the greater generality for camera setups. The 
captured scene is of a person approximately 4 ft away from 
the camera setup. Figure 8 shows the input images for the 
algorithm; Figure 8(c) is an example of an image captured by 
the depth camera. This experiment is chosen to demonstrate 
that DIBR can be utilized to correct the eye-gaze problem of 
teleconference systems. 

CALIBRATION
To fuse depth and color information, the cameras are calibrat-
ed using the classical checkerboard calibration technique, 
which is implemented using OpenCV’s camera calibration and 

(a) (b) (c)

[FIG8] Images used as input for the DIBR algorithm. The color images have a resolution of 640 3 480 and the depth image has a 
resolution of 2 04 3 204. (a) Input left color view, (b) input right color view, and (c) input depth image.

[TABLE 1] TIMING COMPARISON (IN MILLISECONDS) OF 
SEQUENTIAL CPU-BASED AND GPU-BASED IMPLEMENTA-
TIONS FOR THE DEPTH PROPAGATION STAGE AND THE 
CBDF STAGE. THE IMAGE RESOLUTION IS 800 3 600 AND 
THE FILTER KERNEL SIZE IS 11 3 11.

HARDWARE DEPTH PROP. CBDF

CPU INTEL CORE 2 DUO E8400, 
3.0 GHZ

38 1041

GPU NVIDIA GEFORCE 9800 GT, 
600 MHZ

24 14

SPEEDUP 1.6X 74.4X

(a)
(b)

(c) (d)

[FIG7] The real camera setup used in our experiments. The (b) 
depth camera is positioned in the center with a color camera 
approximately 10 in to the left (a) and right (d). The third color 
camera (c) is used as a ground truth for the virtual camera.

AN EFFICIENT REPRESENTATION OF DIBR 
DATA IS IMPORTANT TO FACILITATING 

THE PROCESSING, TRANSMITTING, 
AND RENDERING OF DIBR DATA.
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