
IEEE SIGNAL PROCESSING MAGAZINE [58] JANUARY 2011

©
 A

R
T

V
IL

LE
 &

 B
R

A
N

D
 X

 P
IC

T
U

R
E

S

 Digital Object Identifier 10.1109/MSP.2010.939075

T
he National Academy of Engineering recently
identified 14 grand challenges for engineering in
the 21st century (www.engineeringchallenges.
org). We believe that the continuing advances
in ubiquitous sensing, processing, and computing

provide the potential to tackle two of these 14 grand challeng-
es: specifically, enhancing virtual reality and advancing
 personalized learning.

INTRODUCTION
Recently, the ubiquity of digital cameras has made a great
impact on visual communication as can be seen from the explo-
sive growth of visual contents on the Internet and the default
inclusion of a digital camera on cell phones and laptops. Two
recent developments in sensing and computing have the poten-
tial to revolutionize visual communication further by enabling
immersive and interactive capabilities. The first development is
the emergence of lower-priced, fast, and robust cameras for
measuring depth [1]. Depth measurements provide a perfect
complementary information to the traditional color imaging in
capturing the three-dimensional (3-D) scene. The second devel-
opment is the general-purpose parallel computing platforms
such as graphics processing units (GPUs) that can significantly
speedup many visual computing tasks [2] and bring them to the
real-time realm. These developments and high demand for
immersive communication present a tremendous opportunity
for the signal processing field.

[Minh N. Do, Quang H. Nguyen, Ha T. Nguyen, Daniel Kubacki, and Sanjay J. Patel]

[An introduction of the

propagation algorithm and analysis

for image-based rendering with

depth cameras]

 Date of publication: 17 December 2010

1053-5888/11/$26.00©2011IEEE

In particular, we envision systems, called remote reality,
which can record real scenes and render 3-D free-viewpoint
videos and augment it with virtual reality. Such a system
can provide immersive and interactive 3-D viewing experi-
ences for personalized distance learning and immersive com-
munication. With recorded 3-D visual information, users can
freely choose their viewpoints as if each of them had a virtual
mobile camera. When users want to get a closer look at some
part of a remote scene, they simply have to move the virtual
camera to a suitable location. With depth keying, the video
background can be removed and replaced by other interac-
tive backgrounds. Moreover, 3-D free-viewpoint videos can be
merged with objects of virtual 3-D worlds. Then users
become integral parts of a virtual world, which frees them
from some of the constraints imposed by current telecom-
munication systems.

IEEE SIGNAL PROCESSING MAGAZINE [63] JANUARY 2011

This term measures the
impact of the actual cameras
on the virtual camera based
on their relative geometrical
positions.

The depth jittering term

 Bv 5 sup
u[3a,b4, i5 1,c , N

e

kkCv 2 Ci kk2
d1u22 f , (4)

where d1u2 is the depth at surface point g1u2 to the virtual
image plane. This quantity measures how geometrically
 deviated the virtual camera is from the actual cameras.

Based on the above definitions, the following theorem presents
a bound on the rendering quality of the propagation algorithm.

Theorem 1 [5]: The MAE of the virtual image using the
propagation algorithm is bounded by

 MAE#
3Y3

4Y1
Dx

27fvrr7̀ 1 ET 1 EDBv7fvr7̀ . (5)

We note that the first term in (5) is related to the interpola-
tion error in the texture regions. The second term is related to
the quality of the actual color cameras. The third term mea-
sures the impact of the depth and its estimate.

INTERPRETATIONS
In this section, we provide interpretations of the result in the
section “Results.” The idea is to look at each component of the
error bound in (5) and find its physical meaning and implica-
tions on IBR applications. These interpretations should only be
considered as “rules of thumb” when designing IBR systems.
For rigorous analysis, we refer to the original paper [5].

 � Rule 1: In texture regions, the density of actual pixels
counts. It can be shown that Y3 5 O1N2 22. Hence, the first
term in (5) behaves as O1Dx

2/N22. In other words, increasing
the resolution of actual cameras has a similar effect to hav-
ing more actual cameras in texture regions.

 � Rule 2: The impact of the actual camera quality on the
MAE is linear. It is intuitive to see that the quality of actual
cameras effect directly to the rendering quality. However,
the result in (5) also reveals that the rendering quality is
linearly proportional to the actual camera quality (for both
color and depth).

 � Rule 3: Use neighboring actual cameras when depth is
inaccurate. To reduce the impact of depth errors, i.e., the
third term, two options are available. The first option is
obvious, to equip with better depth cameras, which is to
reduce ED. The second option is to reduce Bv, or equivalent-
ly to use information from actual cameras that are close to
the virtual camera.

FAST PROCESSING USING
GENERAL-PURPOSE PARALLEL COMPUTING
A major advantage of the algorithm outlined in the section
“Image-Based Rendering with Depth Cameras Using

Propagation Algorithm” is that
it can be easily mapped onto
data parallel architectures
such as modern GPUs. In this
 section, we briefly describe the
parallelism of each processing
step of our algorithm, and the

high-level mapping onto the Nvidia CUDA architecture for
GPU-based computing.

The occlusion removal and CBDF stages are purely par-
allel as each pixel in the desired view can be computed inde-
pendently. In the depth propagation stage, copying the
depth values in the reference view to appropriate pixels in
the desired view is more complex from a parallelism per-
spective since, at some pixels, this is not a one-to-one map-
ping. This operation requires some form of synchronization
to prevent concurrent writes to the same pixel and can be
accomplished with the use of atomic memory operations, or
alternatively, with the use of Z-buffering hardware available
on modern GPUs.

The disocclusion filling stage also has a sequential compo-
nent since calculating unknown depth information is depen-
dent on previously interpolated values. However, this
dependence exists only on one-dimensional (1-D) lines ema-
nating from the epipole point, and thus the problem can be
expressed as a parallel set of 1-D filters. First, find the epipole
point position and categorize into one of eight following sub-
sets: top, bottom, left, right, top left, top right, bottom left, or
bottom right, corresponding to eight sets of par allel lines for
every 45° angle. The parallel lines in each set need to pass
through all pixels in the depth image. For each set of parallel
lines, all pixel coordinates of each line can be precomputed
and stored in a lookup table.

The 1-D CBDF is performed with each line proceeding in
parallel, which can be easily mapped onto the GPU archi-
tecture. The depth edge enhancement stage is simply a
series of independent window-based operators and, hence,
is naturally parallel. The final rendering step is quite simi-
lar to the first and second part of the algorithm except for
the inclusion of a median filter. However, the median filter
is another window-based operator and, hence, is suitable
for parallelism.

Regarding the parallel scalability of our algorithm: our
experiments show that there is ample data parallelism to
take advantage of the heavily threaded 128-core modern
GPU architecture. Our technique scales further with image
size, and higher resolution images will create additional
parallel work for future data parallel architectures that
support still higher degrees of parallelism. Furthermore,
with the use of additional cameras, the data parallel com-
putational load increases still further, creating additional
work that can be gainfully accelerated on future data par-
allel architectures.

To check the efficiency of the parallelism, we compare the
CPU-based implementation and the preliminary GPU-based

A MAJOR ADVANTAGE OF OUR
PROPOSED ALGORITHM IS THAT IT CAN

BE EASILY MAPPED ONTO DATA PARALLEL
ARCHITECTURES SUCH AS MODERN GPUs.

IEEE SIGNAL PROCESSING MAGAZINE [64] JANUARY 2011

implementation of the depth
propagation stage and the CBDF
stage. The experiment was run
on the platform of Intel Core2
Duo E8400 3.0 GHz and a
Nvidia GeForce 9800GT 600
MHz with 112 processing cores.

Table 1 shows the comparison results of two representa-
tive processing steps in the 3-D propagation algorithm. The
depth propagation step, as mentioned above, requires

 memory synchronization to
prevent concurrent writes
and thus limits the effec-
tiveness of multithread. As a
result, we observe the least
speedup in the GPU imple-
mentation compared to the

CPU implementation. The CBDF step, in contrast, is highly
parallel and benefits a very large speedup with GPU. Since
the CBDF step consumes the most computing time in the
CPU implementation, the mapping from CPU to GPU sig-
nificantly speeds up the overall computing time of the 3-D
propagation algorithm and has potential to achieve
 real-time performance.

NUMERICAL EXPERIMENTS
In this section, we provide results from the implementation
of the above algorithm using actual depth and color cameras.
For our experiment, we used one PMD CamCube depth cam-
era with a resolution of 204 3 204 and three Point Grey
Flea2 color research cameras, each with a resolution of
640 3 480. The cameras were arranged similar to a typical
teleconference setup. Two color cameras were placed approx-
imately 20 in apart with a depth camera in the middle. A
third camera was used to provide a ground truth for the vir-
tual camera. Figure 7 shows the setup. Note that these cam-
era are not necessarily on a consistent baseline, which
demonstrates the greater generality for camera setups. The
captured scene is of a person approximately 4 ft away from
the camera setup. Figure 8 shows the input images for the
algorithm; Figure 8(c) is an example of an image captured by
the depth camera. This experiment is chosen to demonstrate
that DIBR can be utilized to correct the eye-gaze problem of
teleconference systems.

CALIBRATION
To fuse depth and color information, the cameras are calibrat-
ed using the classical checkerboard calibration technique,
which is implemented using OpenCV’s camera calibration and

(a) (b) (c)

[FIG8] Images used as input for the DIBR algorithm. The color images have a resolution of 640 3 480 and the depth image has a
resolution of 2 04 3 204. (a) Input left color view, (b) input right color view, and (c) input depth image.

[TABLE 1] TIMING COMPARISON (IN MILLISECONDS) OF
SEQUENTIAL CPU-BASED AND GPU-BASED IMPLEMENTA-
TIONS FOR THE DEPTH PROPAGATION STAGE AND THE
CBDF STAGE. THE IMAGE RESOLUTION IS 800 3 600 AND
THE FILTER KERNEL SIZE IS 11 3 11.

HARDWARE DEPTH PROP. CBDF

CPU INTEL CORE 2 DUO E8400,
3.0 GHZ

38 1041

GPU NVIDIA GEFORCE 9800 GT,
600 MHZ

24 14

SPEEDUP 1.6X 74.4X

(a)
(b)

(c) (d)

[FIG7] The real camera setup used in our experiments. The (b)
depth camera is positioned in the center with a color camera
approximately 10 in to the left (a) and right (d). The third color
camera (c) is used as a ground truth for the virtual camera.

AN EFFICIENT REPRESENTATION OF DIBR
DATA IS IMPORTANT TO FACILITATING

THE PROCESSING, TRANSMITTING,
AND RENDERING OF DIBR DATA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

